15 KiB
Double-Ended Queue
In a regular queue, we can only delete elements from the head or add elements to the tail. As shown in the figure below, a "double-ended queue (deque)" offers more flexibility, allowing the addition or removal of elements at both the head and the tail.
Common Operations in Double-Ended Queue
The common operations in a double-ended queue are listed below, and the specific method names depend on the programming language used.
Table Efficiency of Double-Ended Queue Operations
Method Name | Description | Time Complexity |
---|---|---|
pushFirst() |
Add an element to the front | O(1) |
pushLast() |
Add an element to the rear | O(1) |
popFirst() |
Remove the front element | O(1) |
popLast() |
Remove the rear element | O(1) |
peekFirst() |
Access the front element | O(1) |
peekLast() |
Access the rear element | O(1) |
Similarly, we can directly use the double-ended queue classes implemented in programming languages:
=== "Python"
```python title="deque.py"
from collections import deque
# Initialize the deque
deque: deque[int] = deque()
# Enqueue elements
deque.append(2) # Add to the rear
deque.append(5)
deque.append(4)
deque.appendleft(3) # Add to the front
deque.appendleft(1)
# Access elements
front: int = deque[0] # Front element
rear: int = deque[-1] # Rear element
# Dequeue elements
pop_front: int = deque.popleft() # Front element dequeued
pop_rear: int = deque.pop() # Rear element dequeued
# Get the length of the deque
size: int = len(deque)
# Check if the deque is empty
is_empty: bool = len(deque) == 0
```
=== "C++"
```cpp title="deque.cpp"
/* Initialize the deque */
deque<int> deque;
/* Enqueue elements */
deque.push_back(2); // Add to the rear
deque.push_back(5);
deque.push_back(4);
deque.push_front(3); // Add to the front
deque.push_front(1);
/* Access elements */
int front = deque.front(); // Front element
int back = deque.back(); // Rear element
/* Dequeue elements */
deque.pop_front(); // Front element dequeued
deque.pop_back(); // Rear element dequeued
/* Get the length of the deque */
int size = deque.size();
/* Check if the deque is empty */
bool empty = deque.empty();
```
=== "Java"
```java title="deque.java"
/* Initialize the deque */
Deque<Integer> deque = new LinkedList<>();
/* Enqueue elements */
deque.offerLast(2); // Add to the rear
deque.offerLast(5);
deque.offerLast(4);
deque.offerFirst(3); // Add to the front
deque.offerFirst(1);
/* Access elements */
int peekFirst = deque.peekFirst(); // Front element
int peekLast = deque.peekLast(); // Rear element
/* Dequeue elements */
int popFirst = deque.pollFirst(); // Front element dequeued
int popLast = deque.pollLast(); // Rear element dequeued
/* Get the length of the deque */
int size = deque.size();
/* Check if the deque is empty */
boolean isEmpty = deque.isEmpty();
```
=== "C#"
```csharp title="deque.cs"
/* Initialize the deque */
// In C#, LinkedList is used as a deque
LinkedList<int> deque = new();
/* Enqueue elements */
deque.AddLast(2); // Add to the rear
deque.AddLast(5);
deque.AddLast(4);
deque.AddFirst(3); // Add to the front
deque.AddFirst(1);
/* Access elements */
int peekFirst = deque.First.Value; // Front element
int peekLast = deque.Last.Value; // Rear element
/* Dequeue elements */
deque.RemoveFirst(); // Front element dequeued
deque.RemoveLast(); // Rear element dequeued
/* Get the length of the deque */
int size = deque.Count;
/* Check if the deque is empty */
bool isEmpty = deque.Count == 0;
```
=== "Go"
```go title="deque_test.go"
/* Initialize the deque */
// In Go, use list as a deque
deque := list.New()
/* Enqueue elements */
deque.PushBack(2) // Add to the rear
deque.PushBack(5)
deque.PushBack(4)
deque.PushFront(3) // Add to the front
deque.PushFront(1)
/* Access elements */
front := deque.Front() // Front element
rear := deque.Back() // Rear element
/* Dequeue elements */
deque.Remove(front) // Front element dequeued
deque.Remove(rear) // Rear element dequeued
/* Get the length of the deque */
size := deque.Len()
/* Check if the deque is empty */
isEmpty := deque.Len() == 0
```
=== "Swift"
```swift title="deque.swift"
/* Initialize the deque */
// Swift does not have a built-in deque class, so Array can be used as a deque
var deque: [Int] = []
/* Enqueue elements */
deque.append(2) // Add to the rear
deque.append(5)
deque.append(4)
deque.insert(3, at: 0) // Add to the front
deque.insert(1, at: 0)
/* Access elements */
let peekFirst = deque.first! // Front element
let peekLast = deque.last! // Rear element
/* Dequeue elements */
// Using Array, popFirst has a complexity of O(n)
let popFirst = deque.removeFirst() // Front element dequeued
let popLast = deque.removeLast() // Rear element dequeued
/* Get the length of the deque */
let size = deque.count
/* Check if the deque is empty */
let isEmpty = deque.isEmpty
```
=== "JS"
```javascript title="deque.js"
/* Initialize the deque */
// JavaScript does not have a built-in deque, so Array is used as a deque
const deque = [];
/* Enqueue elements */
deque.push(2);
deque.push(5);
deque.push(4);
// Note that unshift() has a time complexity of O(n) as it's an array
deque.unshift(3);
deque.unshift(1);
/* Access elements */
const peekFirst = deque[0]; // Front element
const peekLast = deque[deque.length - 1]; // Rear element
/* Dequeue elements */
// Note that shift() has a time complexity of O(n) as it's an array
const popFront = deque.shift(); // Front element dequeued
const popBack = deque.pop(); // Rear element dequeued
/* Get the length of the deque */
const size = deque.length;
/* Check if the deque is empty */
const isEmpty = size === 0;
```
=== "TS"
```typescript title="deque.ts"
/* Initialize the deque */
// TypeScript does not have a built-in deque, so Array is used as a deque
const deque: number[] = [];
/* Enqueue elements */
deque.push(2);
deque.push(5);
deque.push(4);
// Note that unshift() has a time complexity of O(n) as it's an array
deque.unshift(3);
deque.unshift(1);
/* Access elements */
const peekFirst: number = deque[0]; // Front element
const peekLast: number = deque[deque.length - 1]; // Rear element
/* Dequeue elements */
// Note that shift() has a time complexity of O(n) as it's an array
const popFront: number = deque.shift() as number; // Front element dequeued
const popBack: number = deque.pop() as number; // Rear element dequeued
/* Get the length of the deque */
const size: number = deque.length;
/* Check if the deque is empty */
const isEmpty: boolean = size === 0;
```
=== "Dart"
```dart title="deque.dart"
/* Initialize the deque */
// In Dart, Queue is defined as a deque
Queue<int> deque = Queue<int>();
/* Enqueue elements */
deque.addLast(2); // Add to the rear
deque.addLast(5);
deque.addLast(4);
deque.addFirst(3); // Add to the front
deque.addFirst(1);
/* Access elements */
int peekFirst = deque.first; // Front element
int peekLast = deque.last; // Rear element
/* Dequeue elements */
int popFirst = deque.removeFirst(); // Front element dequeued
int popLast = deque.removeLast(); // Rear element dequeued
/* Get the length of the deque */
int size = deque.length;
/* Check if the deque is empty */
bool isEmpty = deque.isEmpty;
```
=== "Rust"
```rust title="deque.rs"
/* Initialize the deque */
let mut deque: VecDeque<u32> = VecDeque::new();
/* Enqueue elements */
deque.push_back(2); // Add to the rear
deque.push_back(5);
deque.push_back(4);
deque.push_front(3); // Add to the front
deque.push_front(1);
/* Access elements */
if let Some(front) = deque.front() { // Front element
}
if let Some(rear) = deque.back() { // Rear element
}
/* Dequeue elements */
if let Some(pop_front) = deque.pop_front() { // Front element dequeued
}
if let Some(pop_rear) = deque.pop_back() { // Rear element dequeued
}
/* Get the length of the deque */
let size = deque.len();
/* Check if the deque is empty */
let is_empty = deque.is_empty();
```
=== "C"
```c title="deque.c"
// C does not provide a built-in deque
```
=== "Zig"
```zig title="deque.zig"
```
??? pythontutor "Code Visualization"
https://pythontutor.com/render.html#code=from%20collections%20import%20deque%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%0A%20%20%20%20deq%20%3D%20deque%28%29%0A%0A%20%20%20%20%23%20%E5%85%83%E7%B4%A0%E5%85%A5%E9%98%9F%0A%20%20%20%20deq.append%282%29%20%20%23%20%E6%B7%BB%E5%8A%A0%E8%87%B3%E9%98%9F%E5%B0%BE%0A%20%20%20%20deq.append%285%29%0A%20%20%20%20deq.append%284%29%0A%20%20%20%20deq.appendleft%283%29%20%20%23%20%E6%B7%BB%E5%8A%A0%E8%87%B3%E9%98%9F%E9%A6%96%0A%20%20%20%20deq.appendleft%281%29%0A%20%20%20%20print%28%22%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%20deque%20%3D%22,%20deq%29%0A%0A%20%20%20%20%23%20%E8%AE%BF%E9%97%AE%E5%85%83%E7%B4%A0%0A%20%20%20%20front%20%3D%20deq%5B0%5D%20%20%23%20%E9%98%9F%E9%A6%96%E5%85%83%E7%B4%A0%0A%20%20%20%20print%28%22%E9%98%9F%E9%A6%96%E5%85%83%E7%B4%A0%20front%20%3D%22,%20front%29%0A%20%20%20%20rear%20%3D%20deq%5B-1%5D%20%20%23%20%E9%98%9F%E5%B0%BE%E5%85%83%E7%B4%A0%0A%20%20%20%20print%28%22%E9%98%9F%E5%B0%BE%E5%85%83%E7%B4%A0%20rear%20%3D%22,%20rear%29%0A%0A%20%20%20%20%23%20%E5%85%83%E7%B4%A0%E5%87%BA%E9%98%9F%0A%20%20%20%20pop_front%20%3D%20deq.popleft%28%29%20%20%23%20%E9%98%9F%E9%A6%96%E5%85%83%E7%B4%A0%E5%87%BA%E9%98%9F%0A%20%20%20%20print%28%22%E9%98%9F%E9%A6%96%E5%87%BA%E9%98%9F%E5%85%83%E7%B4%A0%20%20pop_front%20%3D%22,%20pop_front%29%0A%20%20%20%20print%28%22%E9%98%9F%E9%A6%96%E5%87%BA%E9%98%9F%E5%90%8E%20deque%20%3D%22,%20deq%29%0A%20%20%20%20pop_rear%20%3D%20deq.pop%28%29%20%20%23%20%E9%98%9F%E5%B0%BE%E5%85%83%E7%B4%A0%E5%87%BA%E9%98%9F%0A%20%20%20%20print%28%22%E9%98%9F%E5%B0%BE%E5%87%BA%E9%98%9F%E5%85%83%E7%B4%A0%20%20pop_rear%20%3D%22,%20pop_rear%29%0A%20%20%20%20print%28%22%E9%98%9F%E5%B0%BE%E5%87%BA%E9%98%9F%E5%90%8E%20deque%20%3D%22,%20deq%29%0A%0A%20%20%20%20%23%20%E8%8E%B7%E5%8F%96%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%E7%9A%84%E9%95%BF%E5%BA%A6%0A%20%20%20%20size%20%3D%20len%28deq%29%0A%20%20%20%20print%28%22%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%E9%95%BF%E5%BA%A6%20size%20%3D%22,%20size%29%0A%0A%20%20%20%20%23%20%E5%88%A4%E6%96%AD%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%E6%98%AF%E5%90%A6%E4%B8%BA%E7%A9%BA%0A%20%20%20%20is_empty%20%3D%20len%28deq%29%20%3D%3D%200%0A%20%20%20%20print%28%22%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%E6%98%AF%E5%90%A6%E4%B8%BA%E7%A9%BA%20%3D%22,%20is_empty%29&cumulative=false&curInstr=3&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false
Implementing a Double-Ended Queue *
The implementation of a double-ended queue is similar to that of a regular queue, with the choice of either linked lists or arrays as the underlying data structure.
Implementation Based on Doubly Linked List
Recall from the previous section that we used a regular singly linked list to implement a queue, as it conveniently allows for deleting the head node (corresponding to dequeue operation) and adding new nodes after the tail node (corresponding to enqueue operation).
For a double-ended queue, both the head and the tail can perform enqueue and dequeue operations. In other words, a double-ended queue needs to implement another symmetric direction of operations. For this, we use a "doubly linked list" as the underlying data structure of the double-ended queue.
As shown in the figure below, we treat the head and tail nodes of the doubly linked list as the front and rear of the double-ended queue, respectively, and implement the functionality to add and remove nodes at both ends.
The implementation code is as follows:
[file]{linkedlist_deque}-[class]{linked_list_deque}-[func]{}
Implementation Based on Array
As shown in the figure below, similar to implementing a queue with an array, we can also use a circular array to implement a double-ended queue.
The implementation only needs to add methods for "front enqueue" and "rear dequeue":
[file]{array_deque}-[func]{}
Applications of Double-Ended Queue
The double-ended queue combines the logic of both stacks and queues, thus it can implement all the application scenarios of these two, while offering greater flexibility.
We know that the "undo" feature in software is typically implemented using a stack: the system pushes
each change operation onto the stack, and then pops
to implement undoing. However, considering the limitations of system resources, software often restricts the number of undo steps (for example, only allowing the last 50 steps). When the length of the stack exceeds 50, the software needs to perform a deletion operation at the bottom of the stack (the front of the queue). But a regular stack cannot perform this function, which is where a double-ended queue becomes necessary. Note that the core logic of "undo" still follows the Last-In-First-Out principle of a stack, but a double-ended queue can more flexibly implement some additional logic.