You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
75 lines
3.7 KiB
75 lines
3.7 KiB
# 建堆操作
|
|
|
|
在某些情况下,我们希望使用一个列表的所有元素来构建一个堆,这个过程被称为“建堆操作”。
|
|
|
|
## 借助入堆操作实现
|
|
|
|
我们首先创建一个空堆,然后遍历列表,依次对每个元素执行“入堆操作”,即先将元素添加至堆的尾部,再对该元素执行“从底至顶”堆化。
|
|
|
|
每当一个元素入堆,堆的长度就加一。由于节点是从顶到底依次被添加进二叉树的,因此堆是“自上而下”地构建的。
|
|
|
|
设元素数量为 $n$ ,每个元素的入堆操作使用 $O(\log{n})$ 时间,因此该建堆方法的时间复杂度为 $O(n \log n)$ 。
|
|
|
|
## 通过遍历堆化实现
|
|
|
|
实际上,我们可以实现一种更为高效的建堆方法,共分为两步。
|
|
|
|
1. 将列表所有元素原封不动添加到堆中,此时堆的性质尚未得到满足。
|
|
2. 倒序遍历堆(即层序遍历的倒序),依次对每个非叶节点执行“从顶至底堆化”。
|
|
|
|
**每当堆化一个节点后,以该节点为根节点的子树就形成一个合法的子堆**。而由于是倒序遍历,因此堆是“自下而上”地被构建的。
|
|
|
|
之所以选择倒序遍历,是因为这样能够保证当前节点之下的子树已经是合法的子堆,这样堆化当前节点才是有效的。
|
|
|
|
值得说明的是,**叶节点没有子节点,天然就是合法的子堆,因此无需堆化**。如以下代码所示,最后一个非叶节点是最后一个节点的父节点,我们从它开始倒序遍历并执行堆化。
|
|
|
|
```src
|
|
[file]{my_heap}-[class]{max_heap}-[func]{__init__}
|
|
```
|
|
|
|
## 复杂度分析
|
|
|
|
下面,我们来尝试推算第二种建堆方法的时间复杂度。
|
|
|
|
- 假设完全二叉树的节点数量为 $n$ ,则叶节点数量为 $(n + 1) / 2$ ,其中 $/$ 为向下整除。因此需要堆化的节点数量为 $(n - 1) / 2$ 。
|
|
- 在从顶至底堆化的过程中,每个节点最多堆化到叶节点,因此最大迭代次数为二叉树高度 $\log n$ 。
|
|
|
|
将上述两者相乘,可得到建堆过程的时间复杂度为 $O(n \log n)$ 。**但这个估算结果并不准确,因为我们没有考虑到二叉树底层节点数量远多于顶层节点的性质**。
|
|
|
|
接下来我们来进行更为准确的计算。为了减小计算难度,假设给定一个节点数量为 $n$ ,高度为 $h$ 的“完美二叉树”,该假设不会影响计算结果的正确性。
|
|
|
|
![完美二叉树的各层节点数量](build_heap.assets/heapify_operations_count.png)
|
|
|
|
如上图所示,节点“从顶至底堆化”的最大迭代次数等于该节点到叶节点的距离,而该距离正是“节点高度”。因此,我们可以将各层的“节点数量 $\times$ 节点高度”求和,**从而得到所有节点的堆化迭代次数的总和**。
|
|
|
|
$$
|
|
T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{(h-1)}\times1
|
|
$$
|
|
|
|
化简上式需要借助中学的数列知识,先对 $T(h)$ 乘以 $2$ ,得到:
|
|
|
|
$$
|
|
\begin{aligned}
|
|
T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{h-1}\times1 \newline
|
|
2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \dots + 2^{h}\times1 \newline
|
|
\end{aligned}
|
|
$$
|
|
|
|
使用错位相减法,用下式 $2 T(h)$ 减去上式 $T(h)$ ,可得:
|
|
|
|
$$
|
|
2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \dots + 2^{h-1} + 2^h
|
|
$$
|
|
|
|
观察上式,发现 $T(h)$ 是一个等比数列,可直接使用求和公式,得到时间复杂度为:
|
|
|
|
$$
|
|
\begin{aligned}
|
|
T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline
|
|
& = 2^{h+1} - h - 2 \newline
|
|
& = O(2^h)
|
|
\end{aligned}
|
|
$$
|
|
|
|
进一步地,高度为 $h$ 的完美二叉树的节点数量为 $n = 2^{h+1} - 1$ ,易得复杂度为 $O(2^h) = O(n)$ 。以上推算表明,**输入列表并建堆的时间复杂度为 $O(n)$ ,非常高效**。
|