|
|
|
|
|
<!doctype html>
|
|
|
<html lang="zh" class="no-js">
|
|
|
<head>
|
|
|
|
|
|
<meta charset="utf-8">
|
|
|
<meta name="viewport" content="width=device-width,initial-scale=1">
|
|
|
|
|
|
<meta name="description" content="动画图解、一键运行的数据结构与算法教程">
|
|
|
|
|
|
|
|
|
<meta name="author" content="Krahets">
|
|
|
|
|
|
|
|
|
<link rel="canonical" href="https://www.hello-algo.com/chapter_dynamic_programming/dp_solution_pipeline/">
|
|
|
|
|
|
|
|
|
<link rel="prev" href="../dp_problem_features/">
|
|
|
|
|
|
|
|
|
<link rel="next" href="../knapsack_problem/">
|
|
|
|
|
|
<link rel="icon" href="../../assets/images/favicon.png">
|
|
|
<meta name="generator" content="mkdocs-1.4.2, mkdocs-material-9.1.11">
|
|
|
|
|
|
|
|
|
|
|
|
<title>13.3. DP 解题思路(New) - Hello 算法</title>
|
|
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../../assets/stylesheets/main.85bb2934.min.css">
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../../assets/stylesheets/palette.a6bdf11c.min.css">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
|
|
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Noto+Sans+SC:300,300i,400,400i,700,700i%7CFira+Code:400,400i,700,700i&display=fallback">
|
|
|
<style>:root{--md-text-font:"Noto Sans SC";--md-code-font:"Fira Code"}</style>
|
|
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="../../stylesheets/extra.css">
|
|
|
|
|
|
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</head>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo">
|
|
|
|
|
|
|
|
|
|
|
|
<script>var palette=__md_get("__palette");if(palette&&"object"==typeof palette.color)for(var key of Object.keys(palette.color))document.body.setAttribute("data-md-color-"+key,palette.color[key])</script>
|
|
|
|
|
|
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
|
|
|
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
|
|
|
<label class="md-overlay" for="__drawer"></label>
|
|
|
<div data-md-component="skip">
|
|
|
|
|
|
|
|
|
<a href="#133" class="md-skip">
|
|
|
跳转至
|
|
|
</a>
|
|
|
|
|
|
</div>
|
|
|
<div data-md-component="announce">
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<header class="md-header md-header--shadow" data-md-component="header">
|
|
|
<nav class="md-header__inner md-grid" aria-label="页眉">
|
|
|
<a href="../.." title="Hello 算法" class="md-header__button md-logo" aria-label="Hello 算法" data-md-component="logo">
|
|
|
|
|
|
<img src="../../assets/images/logo.png" alt="logo">
|
|
|
|
|
|
</a>
|
|
|
<label class="md-header__button md-icon" for="__drawer">
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
|
|
|
</label>
|
|
|
<div class="md-header__title" data-md-component="header-title">
|
|
|
<div class="md-header__ellipsis">
|
|
|
<div class="md-header__topic">
|
|
|
<span class="md-ellipsis">
|
|
|
Hello 算法
|
|
|
</span>
|
|
|
</div>
|
|
|
<div class="md-header__topic" data-md-component="header-topic">
|
|
|
<span class="md-ellipsis">
|
|
|
|
|
|
13.3. DP 解题思路(New)
|
|
|
|
|
|
</span>
|
|
|
</div>
|
|
|
</div>
|
|
|
</div>
|
|
|
|
|
|
|
|
|
<form class="md-header__option" data-md-component="palette">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="indigo" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_1">
|
|
|
|
|
|
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_2" hidden>
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 7a5 5 0 0 1 5 5 5 5 0 0 1-5 5 5 5 0 0 1-5-5 5 5 0 0 1 5-5m0 2a3 3 0 0 0-3 3 3 3 0 0 0 3 3 3 3 0 0 0 3-3 3 3 0 0 0-3-3m0-7 2.39 3.42C13.65 5.15 12.84 5 12 5c-.84 0-1.65.15-2.39.42L12 2M3.34 7l4.16-.35A7.2 7.2 0 0 0 5.94 8.5c-.44.74-.69 1.5-.83 2.29L3.34 7m.02 10 1.76-3.77a7.131 7.131 0 0 0 2.38 4.14L3.36 17M20.65 7l-1.77 3.79a7.023 7.023 0 0 0-2.38-4.15l4.15.36m-.01 10-4.14.36c.59-.51 1.12-1.14 1.54-1.86.42-.73.69-1.5.83-2.29L20.64 17M12 22l-2.41-3.44c.74.27 1.55.44 2.41.44.82 0 1.63-.17 2.37-.44L12 22Z"/></svg>
|
|
|
</label>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="grey" data-md-color-accent="indigo" aria-label="Switch to light mode" type="radio" name="__palette" id="__palette_2">
|
|
|
|
|
|
<label class="md-header__button md-icon" title="Switch to light mode" for="__palette_1" hidden>
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m17.75 4.09-2.53 1.94.91 3.06-2.63-1.81-2.63 1.81.91-3.06-2.53-1.94L12.44 4l1.06-3 1.06 3 3.19.09m3.5 6.91-1.64 1.25.59 1.98-1.7-1.17-1.7 1.17.59-1.98L15.75 11l2.06-.05L18.5 9l.69 1.95 2.06.05m-2.28 4.95c.83-.08 1.72 1.1 1.19 1.85-.32.45-.66.87-1.08 1.27C15.17 23 8.84 23 4.94 19.07c-3.91-3.9-3.91-10.24 0-14.14.4-.4.82-.76 1.27-1.08.75-.53 1.93.36 1.85 1.19-.27 2.86.69 5.83 2.89 8.02a9.96 9.96 0 0 0 8.02 2.89m-1.64 2.02a12.08 12.08 0 0 1-7.8-3.47c-2.17-2.19-3.33-5-3.49-7.82-2.81 3.14-2.7 7.96.31 10.98 3.02 3.01 7.84 3.12 10.98.31Z"/></svg>
|
|
|
</label>
|
|
|
|
|
|
|
|
|
</form>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-header__button md-icon" for="__search">
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
|
|
|
</label>
|
|
|
<div class="md-search" data-md-component="search" role="dialog">
|
|
|
<label class="md-search__overlay" for="__search"></label>
|
|
|
<div class="md-search__inner" role="search">
|
|
|
<form class="md-search__form" name="search">
|
|
|
<input type="text" class="md-search__input" name="query" aria-label="搜索" placeholder="搜索" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
|
|
|
<label class="md-search__icon md-icon" for="__search">
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
|
|
|
</label>
|
|
|
<nav class="md-search__options" aria-label="查找">
|
|
|
|
|
|
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
|
|
|
</a>
|
|
|
|
|
|
<button type="reset" class="md-search__icon md-icon" title="清空当前内容" aria-label="清空当前内容" tabindex="-1">
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
|
|
|
</button>
|
|
|
</nav>
|
|
|
|
|
|
<div class="md-search__suggest" data-md-component="search-suggest"></div>
|
|
|
|
|
|
</form>
|
|
|
<div class="md-search__output">
|
|
|
<div class="md-search__scrollwrap" data-md-scrollfix>
|
|
|
<div class="md-search-result" data-md-component="search-result">
|
|
|
<div class="md-search-result__meta">
|
|
|
正在初始化搜索引擎
|
|
|
</div>
|
|
|
<ol class="md-search-result__list" role="presentation"></ol>
|
|
|
</div>
|
|
|
</div>
|
|
|
</div>
|
|
|
</div>
|
|
|
</div>
|
|
|
|
|
|
|
|
|
<div class="md-header__source">
|
|
|
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
|
|
|
<div class="md-source__icon md-icon">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
|
|
|
</div>
|
|
|
<div class="md-source__repository">
|
|
|
krahets/hello-algo
|
|
|
</div>
|
|
|
</a>
|
|
|
</div>
|
|
|
|
|
|
</nav>
|
|
|
|
|
|
</header>
|
|
|
|
|
|
<div class="md-container" data-md-component="container">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<main class="md-main" data-md-component="main">
|
|
|
<div class="md-main__inner md-grid">
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
|
|
|
<div class="md-sidebar__scrollwrap">
|
|
|
<div class="md-sidebar__inner">
|
|
|
|
|
|
|
|
|
|
|
|
<nav class="md-nav md-nav--primary" aria-label="导航栏" data-md-level="0">
|
|
|
<label class="md-nav__title" for="__drawer">
|
|
|
<a href="../.." title="Hello 算法" class="md-nav__button md-logo" aria-label="Hello 算法" data-md-component="logo">
|
|
|
|
|
|
<img src="../../assets/images/logo.png" alt="logo">
|
|
|
|
|
|
</a>
|
|
|
Hello 算法
|
|
|
</label>
|
|
|
|
|
|
<div class="md-nav__source">
|
|
|
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
|
|
|
<div class="md-source__icon md-icon">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
|
|
|
</div>
|
|
|
<div class="md-source__repository">
|
|
|
krahets/hello-algo
|
|
|
</div>
|
|
|
</a>
|
|
|
</div>
|
|
|
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_preface/">0. 前言</a>
|
|
|
|
|
|
<label for="__nav_1">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_1">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
0. 前言
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
|
|
|
0.1. 关于本书
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
|
|
|
0.2. 如何使用本书
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_preface/summary/" class="md-nav__link">
|
|
|
0.3. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_introduction/">1. 初识算法</a>
|
|
|
|
|
|
<label for="__nav_2">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_2">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
1. 初识算法
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
|
|
|
1.1. 算法无处不在
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
|
|
|
1.2. 算法是什么
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_introduction/summary/" class="md-nav__link">
|
|
|
1.3. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_computational_complexity/">2. 复杂度</a>
|
|
|
|
|
|
<label for="__nav_3">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_3">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
2. 复杂度
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_computational_complexity/performance_evaluation/" class="md-nav__link">
|
|
|
2.1. 算法效率评估
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_computational_complexity/time_complexity/" class="md-nav__link">
|
|
|
2.2. 时间复杂度
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_computational_complexity/space_complexity/" class="md-nav__link">
|
|
|
2.3. 空间复杂度
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
|
|
|
2.4. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_data_structure/">3. 数据结构</a>
|
|
|
|
|
|
<label for="__nav_4">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_4">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
3. 数据结构
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_data_structure/classification_of_data_structure/" class="md-nav__link">
|
|
|
3.1. 数据结构分类
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_data_structure/basic_data_types/" class="md-nav__link">
|
|
|
3.2. 基本数据类型
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_data_structure/number_encoding/" class="md-nav__link">
|
|
|
3.3. 数字编码 *
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_data_structure/character_encoding/" class="md-nav__link">
|
|
|
3.4. 字符编码 *
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
|
|
|
3.5. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_array_and_linkedlist/">4. 数组与链表</a>
|
|
|
|
|
|
<label for="__nav_5">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_5">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
4. 数组与链表
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
|
|
|
4.1. 数组
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
|
|
|
4.2. 链表
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
|
|
|
4.3. 列表
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
|
|
|
4.4. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_stack_and_queue/">5. 栈与队列</a>
|
|
|
|
|
|
<label for="__nav_6">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_6">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
5. 栈与队列
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
|
|
|
5.1. 栈
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
|
|
|
5.2. 队列
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
|
|
|
5.3. 双向队列
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
|
|
|
5.4. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_7" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_hashing/">6. 散列表</a>
|
|
|
|
|
|
<label for="__nav_7">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_7">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
6. 散列表
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
|
|
|
6.1. 哈希表(New)
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
|
|
|
6.2. 哈希冲突(New)
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_hashing/hash_algorithm/" class="md-nav__link">
|
|
|
6.3. 哈希算法(New)
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_hashing/summary/" class="md-nav__link">
|
|
|
6.4. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_8" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_tree/">7. 树</a>
|
|
|
|
|
|
<label for="__nav_8">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_8">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
7. 树
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
|
|
|
7.1. 二叉树
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
|
|
|
7.2. 二叉树遍历
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_tree/array_representation_of_tree/" class="md-nav__link">
|
|
|
7.3. 二叉树数组表示
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
|
|
|
7.4. 二叉搜索树
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
|
|
|
7.5. AVL 树 *
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_tree/summary/" class="md-nav__link">
|
|
|
7.6. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_9" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_heap/">8. 堆</a>
|
|
|
|
|
|
<label for="__nav_9">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_9">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
8. 堆
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_heap/heap/" class="md-nav__link">
|
|
|
8.1. 堆
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
|
|
|
8.2. 建堆操作
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_heap/top_k/" class="md-nav__link">
|
|
|
8.3. Top-K 问题(New)
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_heap/summary/" class="md-nav__link">
|
|
|
8.4. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_10" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_graph/">9. 图</a>
|
|
|
|
|
|
<label for="__nav_10">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_10">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
9. 图
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_graph/graph/" class="md-nav__link">
|
|
|
9.1. 图
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
|
|
|
9.2. 图基础操作
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
|
|
|
9.3. 图的遍历
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_graph/summary/" class="md-nav__link">
|
|
|
9.4. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_11" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_searching/">10. 搜索</a>
|
|
|
|
|
|
<label for="__nav_11">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_11">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
10. 搜索
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
|
|
|
10.1. 二分查找
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
|
|
|
10.2. 二分查找边界
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
|
|
|
10.3. 哈希优化策略
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
|
|
|
10.4. 重识搜索算法
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_searching/summary/" class="md-nav__link">
|
|
|
10.5. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_12" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_sorting/">11. 排序</a>
|
|
|
|
|
|
<label for="__nav_12">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_12_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_12">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
11. 排序
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_sorting/sorting_algorithm/" class="md-nav__link">
|
|
|
11.1. 排序算法
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_sorting/selection_sort/" class="md-nav__link">
|
|
|
11.2. 选择排序
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
|
|
|
11.3. 冒泡排序
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
|
|
|
11.4. 插入排序
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
|
|
|
11.5. 快速排序
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
|
|
|
11.6. 归并排序
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_sorting/heap_sort/" class="md-nav__link">
|
|
|
11.7. 堆排序
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
|
|
|
11.8. 桶排序
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
|
|
|
11.9. 计数排序
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
|
|
|
11.10. 基数排序
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_sorting/summary/" class="md-nav__link">
|
|
|
11.11. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_backtracking/">12. 回溯</a>
|
|
|
|
|
|
<label for="__nav_13">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_13">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
12. 回溯
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_backtracking/backtracking_algorithm/" class="md-nav__link">
|
|
|
12.1. 回溯算法
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_backtracking/permutations_problem/" class="md-nav__link">
|
|
|
12.2. 全排列问题
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_backtracking/subset_sum_problem/" class="md-nav__link">
|
|
|
12.3. 子集和问题(New)
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_backtracking/n_queens_problem/" class="md-nav__link">
|
|
|
12.4. N 皇后问题
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_backtracking/summary/" class="md-nav__link">
|
|
|
12.5. 小结
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" checked>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../">13. 动态规划</a>
|
|
|
|
|
|
<label for="__nav_14">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="true">
|
|
|
<label class="md-nav__title" for="__nav_14">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
13. 动态规划
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../intro_to_dynamic_programming/" class="md-nav__link">
|
|
|
13.1. 初探动态规划(New)
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../dp_problem_features/" class="md-nav__link">
|
|
|
13.2. DP 问题特性(New)
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--active">
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__link md-nav__link--active" for="__toc">
|
|
|
13.3. DP 解题思路(New)
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
<a href="./" class="md-nav__link md-nav__link--active">
|
|
|
13.3. DP 解题思路(New)
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
<nav class="md-nav md-nav--secondary" aria-label="目录">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__title" for="__toc">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
目录
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="#1331" class="md-nav__link">
|
|
|
13.3.1. 问题判断
|
|
|
</a>
|
|
|
|
|
|
</li>
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="#1332" class="md-nav__link">
|
|
|
13.3.2. 问题求解
|
|
|
</a>
|
|
|
|
|
|
</li>
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="#1333" class="md-nav__link">
|
|
|
13.3.3. 方法一:暴力搜索
|
|
|
</a>
|
|
|
|
|
|
</li>
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="#1334" class="md-nav__link">
|
|
|
13.3.4. 方法二:记忆化搜索
|
|
|
</a>
|
|
|
|
|
|
</li>
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="#1335" class="md-nav__link">
|
|
|
13.3.5. 方法三:动态规划
|
|
|
</a>
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
|
|
</nav>
|
|
|
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../knapsack_problem/" class="md-nav__link">
|
|
|
13.4. 0-1 背包问题(New)
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../unbounded_knapsack_problem/" class="md-nav__link">
|
|
|
13.5. 完全背包问题(New)
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../edit_distance_problem/" class="md-nav__link">
|
|
|
13.6. 编辑距离问题(New)
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__link" for="__nav_15" id="__nav_15_label" tabindex="0">
|
|
|
14. 附录
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
</label>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_15">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
14. 附录
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_appendix/installation/" class="md-nav__link">
|
|
|
14.1. 编程环境安装
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
|
|
|
14.2. 一起参与创作
|
|
|
</a>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<li class="md-nav__item md-nav__item--nested">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-nav__link md-nav__link--index ">
|
|
|
<a href="../../chapter_reference/">参考文献</a>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
|
|
|
<label class="md-nav__title" for="__nav_16">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
参考文献
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-scrollfix>
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</li>
|
|
|
|
|
|
|
|
|
|
|
|
</ul>
|
|
|
</nav>
|
|
|
</div>
|
|
|
</div>
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
|
|
|
<div class="md-sidebar__scrollwrap">
|
|
|
<div class="md-sidebar__inner">
|
|
|
|
|
|
|
|
|
<nav class="md-nav md-nav--secondary" aria-label="目录">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<label class="md-nav__title" for="__toc">
|
|
|
<span class="md-nav__icon md-icon"></span>
|
|
|
目录
|
|
|
</label>
|
|
|
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="#1331" class="md-nav__link">
|
|
|
13.3.1. 问题判断
|
|
|
</a>
|
|
|
|
|
|
</li>
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="#1332" class="md-nav__link">
|
|
|
13.3.2. 问题求解
|
|
|
</a>
|
|
|
|
|
|
</li>
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="#1333" class="md-nav__link">
|
|
|
13.3.3. 方法一:暴力搜索
|
|
|
</a>
|
|
|
|
|
|
</li>
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="#1334" class="md-nav__link">
|
|
|
13.3.4. 方法二:记忆化搜索
|
|
|
</a>
|
|
|
|
|
|
</li>
|
|
|
|
|
|
<li class="md-nav__item">
|
|
|
<a href="#1335" class="md-nav__link">
|
|
|
13.3.5. 方法三:动态规划
|
|
|
</a>
|
|
|
|
|
|
</li>
|
|
|
|
|
|
</ul>
|
|
|
|
|
|
</nav>
|
|
|
</div>
|
|
|
</div>
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<div class="md-content" data-md-component="content">
|
|
|
<article class="md-content__inner md-typeset">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a href="https://github.com/krahets/hello-algo/tree/main/docs/chapter_dynamic_programming/dp_solution_pipeline.md" title="编辑此页" class="md-content__button md-icon">
|
|
|
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M10 20H6V4h7v5h5v3.1l2-2V8l-6-6H6c-1.1 0-2 .9-2 2v16c0 1.1.9 2 2 2h4v-2m10.2-7c.1 0 .3.1.4.2l1.3 1.3c.2.2.2.6 0 .8l-1 1-2.1-2.1 1-1c.1-.1.2-.2.4-.2m0 3.9L14.1 23H12v-2.1l6.1-6.1 2.1 2.1Z"/></svg>
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<h1 id="133">13.3. 动态规划解题思路<a class="headerlink" href="#133" title="Permanent link">¶</a></h1>
|
|
|
<p>上两节介绍了动态规划问题的主要特征,接下来我们一起探究两个更加实用的问题:</p>
|
|
|
<ol>
|
|
|
<li>如何判断一个问题是不是动态规划问题?</li>
|
|
|
<li>求解动态规划问题该从何处入手,完整步骤是什么?</li>
|
|
|
</ol>
|
|
|
<h2 id="1331">13.3.1. 问题判断<a class="headerlink" href="#1331" title="Permanent link">¶</a></h2>
|
|
|
<p>总的来说,如果一个问题包含重叠子问题、最优子结构,并满足无后效性,那么它通常就适合用动态规划求解,但我们很难从问题描述上直接提取出这些特性。因此我们通常会放宽条件,<strong>先观察问题是否适合使用回溯(穷举)解决</strong>。</p>
|
|
|
<p><strong>适合用回溯解决的问题通常满足“决策树模型”</strong>,这种问题可以使用树形结构来描述,其中每一个节点代表一个决策,每一条路径代表一个决策序列。</p>
|
|
|
<p>换句话说,如果问题包含明确的决策概念,并且解是通过一系列决策产生的,那么它就满足决策树模型,通常可以使用回溯来解决。</p>
|
|
|
<p>在此基础上,还有一些判断问题是动态规划问题的“加分项”,包括:</p>
|
|
|
<ul>
|
|
|
<li>问题包含最大(小)或最多(少)等最优化描述;</li>
|
|
|
<li>问题的状态能够使用一个列表、多维矩阵或树来表示,并且一个状态与其周围的状态存在某种递推关系;</li>
|
|
|
</ul>
|
|
|
<p>而相应的“减分项”包括:</p>
|
|
|
<ul>
|
|
|
<li>问题的目标是找出所有可能的解决方案,而不是找出最优解。</li>
|
|
|
<li>问题描述中有明显的排列组合的特征,需要返回具体的多个方案。</li>
|
|
|
</ul>
|
|
|
<p>如果一个问题满足决策树模型,并具有较为明显的“加分项“,我们就可以假设它是一个动态规划问题,并尝试求解它。</p>
|
|
|
<h2 id="1332">13.3.2. 问题求解<a class="headerlink" href="#1332" title="Permanent link">¶</a></h2>
|
|
|
<p>动态规划的解题流程可能会因问题的性质和难度而有所不同,但通常遵循以下步骤:描述决策,定义状态,建立 <span class="arithmatex">\(dp\)</span> 表,推导状态转移方程,确定边界条件等。</p>
|
|
|
<p>为了更形象地展示解题步骤,我们使用一个经典问题「最小路径和」来举例。</p>
|
|
|
<div class="admonition question">
|
|
|
<p class="admonition-title">Question</p>
|
|
|
<p>给定一个 <span class="arithmatex">\(n \times m\)</span> 的二维网格 <code>grid</code> ,网格中的每个单元格包含一个非负整数,表示该单元格的代价。机器人以左上角单元格为起始点,每次只能向下或者向右移动一步,直至到达右下角单元格。请返回从左上角到右下角的最小路径和。</p>
|
|
|
</div>
|
|
|
<p>例如以下示例数据,给定网格的最小路径和为 <span class="arithmatex">\(13\)</span> 。</p>
|
|
|
<p><img alt="最小路径和示例数据" src="../dp_solution_pipeline.assets/min_path_sum_example.png" /></p>
|
|
|
<p align="center"> Fig. 最小路径和示例数据 </p>
|
|
|
|
|
|
<p><strong>第一步:思考每轮的决策,定义状态,从而得到 <span class="arithmatex">\(dp\)</span> 表</strong></p>
|
|
|
<p>本题的每一轮的决策就是从当前格子向下或向右一步。设当前格子的行列索引为 <span class="arithmatex">\([i, j]\)</span> ,则向下或向右走一步后,索引变为 <span class="arithmatex">\([i+1, j]\)</span> 或 <span class="arithmatex">\([i, j+1]\)</span> 。因此,状态应包含行索引和列索引两个变量,记为 <span class="arithmatex">\([i, j]\)</span> 。</p>
|
|
|
<p>状态 <span class="arithmatex">\([i, j]\)</span> 对应的子问题为:从起始点 <span class="arithmatex">\([0, 0]\)</span> 走到 <span class="arithmatex">\([i, j]\)</span> 的最小路径和,解记为 <span class="arithmatex">\(dp[i, j]\)</span> 。</p>
|
|
|
<p>至此,我们就得到了一个二维 <span class="arithmatex">\(dp\)</span> 矩阵,其尺寸与输入网格 <span class="arithmatex">\(grid\)</span> 相同。</p>
|
|
|
<p><img alt="状态定义与 dp 表" src="../dp_solution_pipeline.assets/min_path_sum_solution_step1.png" /></p>
|
|
|
<p align="center"> Fig. 状态定义与 dp 表 </p>
|
|
|
|
|
|
<div class="admonition note">
|
|
|
<p class="admonition-title">Note</p>
|
|
|
<p>动态规划和回溯通常都会被描述为一个决策序列,而状态通常由所有决策变量构成。它应当包含描述解题进度的所有变量,其包含了足够的信息,能够用来推导出下一个状态。</p>
|
|
|
<p>每个状态都对应一个子问题,我们会定义一个 <span class="arithmatex">\(dp\)</span> 表来存储所有子问题的解,状态的每个独立变量都是 <span class="arithmatex">\(dp\)</span> 表的一个维度。本质上看,<span class="arithmatex">\(dp\)</span> 表是子问题的解和状态之间的映射。</p>
|
|
|
</div>
|
|
|
<p><strong>第二步:找出最优子结构,进而推导出状态转移方程</strong></p>
|
|
|
<p>对于状态 <span class="arithmatex">\([i, j]\)</span> ,它只能从上边格子 <span class="arithmatex">\([i-1, j]\)</span> 和左边格子 <span class="arithmatex">\([i, j-1]\)</span> 转移而来。因此最优子结构为:到达 <span class="arithmatex">\([i, j]\)</span> 的最小路径和由 <span class="arithmatex">\([i, j-1]\)</span> 的最小路径和与 <span class="arithmatex">\([i-1, j]\)</span> 的最小路径和,这两者较小的那一个决定。</p>
|
|
|
<p>根据以上分析,可推出以下状态转移方程:</p>
|
|
|
<div class="arithmatex">\[
|
|
|
dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
|
|
\]</div>
|
|
|
<p><img alt="最优子结构与状态转移方程" src="../dp_solution_pipeline.assets/min_path_sum_solution_step2.png" /></p>
|
|
|
<p align="center"> Fig. 最优子结构与状态转移方程 </p>
|
|
|
|
|
|
<div class="admonition note">
|
|
|
<p class="admonition-title">Note</p>
|
|
|
<p>基于定义好的 <span class="arithmatex">\(dp\)</span> 表,我们思考原问题和子问题的关系,找出如何通过子问题的解来构造原问题的解。</p>
|
|
|
<p>最优子结构揭示了原问题和子问题的递推关系,一旦我们找到了最优子结构,就可以使用它来构建出状态转移方程。</p>
|
|
|
</div>
|
|
|
<p><strong>第三步:确定边界条件和状态转移顺序</strong></p>
|
|
|
<p>在本题中,当 <span class="arithmatex">\(i=0\)</span> 或 <span class="arithmatex">\(j=0\)</span> 时只有一种可能的路径,即只能向右移动或只能向下移动,因此首行和首列是边界条件。</p>
|
|
|
<p>每个格子是由其左方格子和上方格子转移而来,因此我们使用两层循环来遍历矩阵即可,即外循环正序遍历各行、内循环正序遍历各列。</p>
|
|
|
<p><img alt="边界条件与状态转移顺序" src="../dp_solution_pipeline.assets/min_path_sum_solution_step3.png" /></p>
|
|
|
<p align="center"> Fig. 边界条件与状态转移顺序 </p>
|
|
|
|
|
|
<div class="admonition note">
|
|
|
<p class="admonition-title">Note</p>
|
|
|
<p>边界条件即初始状态,在搜索中用于剪枝,在动态规划中用于初始化 <span class="arithmatex">\(dp\)</span> 表。状态转移顺序的核心是要保证在计算当前问题时,所有它依赖的更小子问题都已经被正确地计算出来。</p>
|
|
|
</div>
|
|
|
<p>接下来,我们就可以实现动态规划代码了。然而,由于子问题分解是一种从顶至底的思想,因此按照“暴力搜索 <span class="arithmatex">\(\rightarrow\)</span> 记忆化搜索 <span class="arithmatex">\(\rightarrow\)</span> 动态规划”的顺序实现更加符合思维习惯。</p>
|
|
|
<h2 id="1333">13.3.3. 方法一:暴力搜索<a class="headerlink" href="#1333" title="Permanent link">¶</a></h2>
|
|
|
<p>从状态 <span class="arithmatex">\([i, j]\)</span> 开始搜索,不断分解为更小的状态 <span class="arithmatex">\([i-1, j]\)</span> 和 <span class="arithmatex">\([i, j-1]\)</span> ,包括以下递归要素:</p>
|
|
|
<ul>
|
|
|
<li><strong>递归参数</strong>:状态 <span class="arithmatex">\([i, j]\)</span> ;<strong>返回值</strong>:从 <span class="arithmatex">\([0, 0]\)</span> 到 <span class="arithmatex">\([i, j]\)</span> 的最小路径和 <span class="arithmatex">\(dp[i, j]\)</span> ;</li>
|
|
|
<li><strong>终止条件</strong>:当 <span class="arithmatex">\(i = 0\)</span> 且 <span class="arithmatex">\(j = 0\)</span> 时,返回代价 <span class="arithmatex">\(grid[0, 0]\)</span> ;</li>
|
|
|
<li><strong>剪枝</strong>:当 <span class="arithmatex">\(i < 0\)</span> 时或 <span class="arithmatex">\(j < 0\)</span> 时索引越界,此时返回代价 <span class="arithmatex">\(+\infty\)</span> ,代表不可行;</li>
|
|
|
</ul>
|
|
|
<div class="tabbed-set tabbed-alternate" data-tabs="1:11"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JavaScript</label><label for="__tabbed_1_6">TypeScript</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label><label for="__tabbed_1_9">Swift</label><label for="__tabbed_1_10">Zig</label><label for="__tabbed_1_11">Dart</label></div>
|
|
|
<div class="tabbed-content">
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.java</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="cm">/* 最小路径和:暴力搜索 */</span>
|
|
|
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDFS</span><span class="p">(</span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
|
|
|
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&&</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="mi">0</span><span class="o">][</span><span class="mi">0</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
|
|
|
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">Integer</span><span class="p">.</span><span class="na">MAX_VALUE</span><span class="p">;</span>
|
|
|
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a><span class="w"> </span><span class="c1">// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价</span>
|
|
|
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFS</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">);</span>
|
|
|
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFS</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
|
|
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a><span class="w"> </span><span class="c1">// 返回从左上角到 (i, j) 的最小路径代价</span>
|
|
|
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-0-16" name="__codelineno-0-16" href="#__codelineno-0-16"></a><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.cpp</span><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="cm">/* 最小路径和:暴力搜索 */</span>
|
|
|
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDFS</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">>></span><span class="w"> </span><span class="o">&</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
|
|
|
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&&</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">];</span>
|
|
|
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
|
|
|
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">INT_MAX</span><span class="p">;</span>
|
|
|
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-1-11" name="__codelineno-1-11" href="#__codelineno-1-11"></a><span class="w"> </span><span class="c1">// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价</span>
|
|
|
<a id="__codelineno-1-12" name="__codelineno-1-12" href="#__codelineno-1-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFS</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">);</span>
|
|
|
<a id="__codelineno-1-13" name="__codelineno-1-13" href="#__codelineno-1-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFS</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
|
|
<a id="__codelineno-1-14" name="__codelineno-1-14" href="#__codelineno-1-14"></a><span class="w"> </span><span class="c1">// 返回从左上角到 (i, j) 的最小路径代价</span>
|
|
|
<a id="__codelineno-1-15" name="__codelineno-1-15" href="#__codelineno-1-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">INT_MAX</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">INT_MAX</span><span class="p">;</span>
|
|
|
<a id="__codelineno-1-16" name="__codelineno-1-16" href="#__codelineno-1-16"></a><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.py</span><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="k">def</span> <span class="nf">min_path_sum_dfs</span><span class="p">(</span><span class="n">grid</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]],</span> <span class="n">i</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">j</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
|
|
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="w"> </span><span class="sd">"""最小路径和:暴力搜索"""</span>
|
|
|
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a> <span class="c1"># 若为左上角单元格,则终止搜索</span>
|
|
|
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a> <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">j</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
|
|
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a> <span class="k">return</span> <span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
|
|
|
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a> <span class="c1"># 若行列索引越界,则返回 +∞ 代价</span>
|
|
|
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a> <span class="k">if</span> <span class="n">i</span> <span class="o"><</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">j</span> <span class="o"><</span> <span class="mi">0</span><span class="p">:</span>
|
|
|
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a> <span class="k">return</span> <span class="n">inf</span>
|
|
|
<a id="__codelineno-2-9" name="__codelineno-2-9" href="#__codelineno-2-9"></a> <span class="c1"># 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价</span>
|
|
|
<a id="__codelineno-2-10" name="__codelineno-2-10" href="#__codelineno-2-10"></a> <span class="n">left</span> <span class="o">=</span> <span class="n">min_path_sum_dfs</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">j</span><span class="p">)</span>
|
|
|
<a id="__codelineno-2-11" name="__codelineno-2-11" href="#__codelineno-2-11"></a> <span class="n">up</span> <span class="o">=</span> <span class="n">min_path_sum_dfs</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span> <span class="n">i</span><span class="p">,</span> <span class="n">j</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
|
|
|
<a id="__codelineno-2-12" name="__codelineno-2-12" href="#__codelineno-2-12"></a> <span class="c1"># 返回从左上角到 (i, j) 的最小路径代价</span>
|
|
|
<a id="__codelineno-2-13" name="__codelineno-2-13" href="#__codelineno-2-13"></a> <span class="k">return</span> <span class="nb">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">up</span><span class="p">)</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.go</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">minPathSumDFS</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDFS</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDFS</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.c</span><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDFS</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.cs</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 最小路径和:暴力搜索 */</span>
|
|
|
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDFS</span><span class="p">(</span><span class="kt">int</span><span class="p">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
|
|
|
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">&&</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">){</span>
|
|
|
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">][</span><span class="m">0</span><span class="p">];</span>
|
|
|
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
|
|
|
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="kt">int</span><span class="p">.</span><span class="n">MaxValue</span><span class="p">;</span>
|
|
|
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="c1">// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价</span>
|
|
|
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFS</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">);</span>
|
|
|
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFS</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
|
|
|
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="w"> </span><span class="c1">// 返回从左上角到 (i, j) 的最小路径代价</span>
|
|
|
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-7-16" name="__codelineno-7-16" href="#__codelineno-7-16"></a><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.swift</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">minPathSumDFS</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.zig</span><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDFS</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.dart</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDFS</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
</div>
|
|
|
</div>
|
|
|
<p>我们尝试画出以 <span class="arithmatex">\(dp[2, 1]\)</span> 为根节点的递归树。观察下图,递归树包含一些重叠子问题,其数量会随着网格 <code>grid</code> 的尺寸变大而急剧增多。</p>
|
|
|
<p>直观上看,<strong>存在多条路径可以从左上角到达同一单元格</strong>,这便是该问题存在重叠子问题的内在原因。</p>
|
|
|
<p><img alt="暴力搜索递归树" src="../dp_solution_pipeline.assets/min_path_sum_dfs.png" /></p>
|
|
|
<p align="center"> Fig. 暴力搜索递归树 </p>
|
|
|
|
|
|
<p>每个状态都有向下和向右两种选择,从左上角走到右下角总共需要 <span class="arithmatex">\(m + n - 2\)</span> 步,所以最差时间复杂度为 <span class="arithmatex">\(O(2^{m + n})\)</span> 。请注意,这种计算方式未考虑临近网格边界的情况,当到达网络边界时只剩下一种选择。因此实际的路径数量会少一些。</p>
|
|
|
<h2 id="1334">13.3.4. 方法二:记忆化搜索<a class="headerlink" href="#1334" title="Permanent link">¶</a></h2>
|
|
|
<p>为了避免重复计算重叠子问题,我们引入一个和网格 <code>grid</code> 相同尺寸的记忆列表 <code>mem</code> ,用于记录各个子问题的解,提升搜索效率。</p>
|
|
|
<div class="tabbed-set tabbed-alternate" data-tabs="2:11"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Java</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Python</label><label for="__tabbed_2_4">Go</label><label for="__tabbed_2_5">JavaScript</label><label for="__tabbed_2_6">TypeScript</label><label for="__tabbed_2_7">C</label><label for="__tabbed_2_8">C#</label><label for="__tabbed_2_9">Swift</label><label for="__tabbed_2_10">Zig</label><label for="__tabbed_2_11">Dart</label></div>
|
|
|
<div class="tabbed-content">
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.java</span><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a><span class="cm">/* 最小路径和:记忆化搜索 */</span>
|
|
|
<a id="__codelineno-11-2" name="__codelineno-11-2" href="#__codelineno-11-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDFSMem</span><span class="p">(</span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-11-3" name="__codelineno-11-3" href="#__codelineno-11-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
|
|
|
<a id="__codelineno-11-4" name="__codelineno-11-4" href="#__codelineno-11-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&&</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-11-5" name="__codelineno-11-5" href="#__codelineno-11-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="mi">0</span><span class="o">][</span><span class="mi">0</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-11-6" name="__codelineno-11-6" href="#__codelineno-11-6"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-11-7" name="__codelineno-11-7" href="#__codelineno-11-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
|
|
|
<a id="__codelineno-11-8" name="__codelineno-11-8" href="#__codelineno-11-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-11-9" name="__codelineno-11-9" href="#__codelineno-11-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">Integer</span><span class="p">.</span><span class="na">MAX_VALUE</span><span class="p">;</span>
|
|
|
<a id="__codelineno-11-10" name="__codelineno-11-10" href="#__codelineno-11-10"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-11-11" name="__codelineno-11-11" href="#__codelineno-11-11"></a><span class="w"> </span><span class="c1">// 若已有记录,则直接返回</span>
|
|
|
<a id="__codelineno-11-12" name="__codelineno-11-12" href="#__codelineno-11-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-11-13" name="__codelineno-11-13" href="#__codelineno-11-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-11-14" name="__codelineno-11-14" href="#__codelineno-11-14"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-11-15" name="__codelineno-11-15" href="#__codelineno-11-15"></a><span class="w"> </span><span class="c1">// 左边和上边单元格的最小路径代价</span>
|
|
|
<a id="__codelineno-11-16" name="__codelineno-11-16" href="#__codelineno-11-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFSMem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">);</span>
|
|
|
<a id="__codelineno-11-17" name="__codelineno-11-17" href="#__codelineno-11-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFSMem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
|
|
<a id="__codelineno-11-18" name="__codelineno-11-18" href="#__codelineno-11-18"></a><span class="w"> </span><span class="c1">// 记录并返回左上角到 (i, j) 的最小路径代价</span>
|
|
|
<a id="__codelineno-11-19" name="__codelineno-11-19" href="#__codelineno-11-19"></a><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-11-20" name="__codelineno-11-20" href="#__codelineno-11-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-11-21" name="__codelineno-11-21" href="#__codelineno-11-21"></a><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.cpp</span><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a><span class="cm">/* 最小路径和:记忆化搜索 */</span>
|
|
|
<a id="__codelineno-12-2" name="__codelineno-12-2" href="#__codelineno-12-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDFSMem</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">>></span><span class="w"> </span><span class="o">&</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">>></span><span class="w"> </span><span class="o">&</span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-12-3" name="__codelineno-12-3" href="#__codelineno-12-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
|
|
|
<a id="__codelineno-12-4" name="__codelineno-12-4" href="#__codelineno-12-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&&</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">];</span>
|
|
|
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
|
|
|
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">INT_MAX</span><span class="p">;</span>
|
|
|
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a><span class="w"> </span><span class="c1">// 若已有记录,则直接返回</span>
|
|
|
<a id="__codelineno-12-12" name="__codelineno-12-12" href="#__codelineno-12-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="mi">-1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-12-13" name="__codelineno-12-13" href="#__codelineno-12-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-12-14" name="__codelineno-12-14" href="#__codelineno-12-14"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-12-15" name="__codelineno-12-15" href="#__codelineno-12-15"></a><span class="w"> </span><span class="c1">// 左边和上边单元格的最小路径代价</span>
|
|
|
<a id="__codelineno-12-16" name="__codelineno-12-16" href="#__codelineno-12-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFSMem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">);</span>
|
|
|
<a id="__codelineno-12-17" name="__codelineno-12-17" href="#__codelineno-12-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFSMem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
|
|
<a id="__codelineno-12-18" name="__codelineno-12-18" href="#__codelineno-12-18"></a><span class="w"> </span><span class="c1">// 记录并返回左上角到 (i, j) 的最小路径代价</span>
|
|
|
<a id="__codelineno-12-19" name="__codelineno-12-19" href="#__codelineno-12-19"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">INT_MAX</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">INT_MAX</span><span class="p">;</span>
|
|
|
<a id="__codelineno-12-20" name="__codelineno-12-20" href="#__codelineno-12-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-12-21" name="__codelineno-12-21" href="#__codelineno-12-21"></a><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.py</span><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a><span class="k">def</span> <span class="nf">min_path_sum_dfs_mem</span><span class="p">(</span>
|
|
|
<a id="__codelineno-13-2" name="__codelineno-13-2" href="#__codelineno-13-2"></a> <span class="n">grid</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]],</span> <span class="n">mem</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]],</span> <span class="n">i</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">j</span><span class="p">:</span> <span class="nb">int</span>
|
|
|
<a id="__codelineno-13-3" name="__codelineno-13-3" href="#__codelineno-13-3"></a><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
|
|
<a id="__codelineno-13-4" name="__codelineno-13-4" href="#__codelineno-13-4"></a><span class="w"> </span><span class="sd">"""最小路径和:记忆化搜索"""</span>
|
|
|
<a id="__codelineno-13-5" name="__codelineno-13-5" href="#__codelineno-13-5"></a> <span class="c1"># 若为左上角单元格,则终止搜索</span>
|
|
|
<a id="__codelineno-13-6" name="__codelineno-13-6" href="#__codelineno-13-6"></a> <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">j</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
|
|
|
<a id="__codelineno-13-7" name="__codelineno-13-7" href="#__codelineno-13-7"></a> <span class="k">return</span> <span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
|
|
|
<a id="__codelineno-13-8" name="__codelineno-13-8" href="#__codelineno-13-8"></a> <span class="c1"># 若行列索引越界,则返回 +∞ 代价</span>
|
|
|
<a id="__codelineno-13-9" name="__codelineno-13-9" href="#__codelineno-13-9"></a> <span class="k">if</span> <span class="n">i</span> <span class="o"><</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">j</span> <span class="o"><</span> <span class="mi">0</span><span class="p">:</span>
|
|
|
<a id="__codelineno-13-10" name="__codelineno-13-10" href="#__codelineno-13-10"></a> <span class="k">return</span> <span class="n">inf</span>
|
|
|
<a id="__codelineno-13-11" name="__codelineno-13-11" href="#__codelineno-13-11"></a> <span class="c1"># 若已有记录,则直接返回</span>
|
|
|
<a id="__codelineno-13-12" name="__codelineno-13-12" href="#__codelineno-13-12"></a> <span class="k">if</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span><span class="p">:</span>
|
|
|
<a id="__codelineno-13-13" name="__codelineno-13-13" href="#__codelineno-13-13"></a> <span class="k">return</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
|
|
|
<a id="__codelineno-13-14" name="__codelineno-13-14" href="#__codelineno-13-14"></a> <span class="c1"># 左边和上边单元格的最小路径代价</span>
|
|
|
<a id="__codelineno-13-15" name="__codelineno-13-15" href="#__codelineno-13-15"></a> <span class="n">left</span> <span class="o">=</span> <span class="n">min_path_sum_dfs_mem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span> <span class="n">mem</span><span class="p">,</span> <span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">j</span><span class="p">)</span>
|
|
|
<a id="__codelineno-13-16" name="__codelineno-13-16" href="#__codelineno-13-16"></a> <span class="n">up</span> <span class="o">=</span> <span class="n">min_path_sum_dfs_mem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span> <span class="n">mem</span><span class="p">,</span> <span class="n">i</span><span class="p">,</span> <span class="n">j</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
|
|
|
<a id="__codelineno-13-17" name="__codelineno-13-17" href="#__codelineno-13-17"></a> <span class="c1"># 记录并返回左上角到 (i, j) 的最小路径代价</span>
|
|
|
<a id="__codelineno-13-18" name="__codelineno-13-18" href="#__codelineno-13-18"></a> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">up</span><span class="p">)</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
|
|
|
<a id="__codelineno-13-19" name="__codelineno-13-19" href="#__codelineno-13-19"></a> <span class="k">return</span> <span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.go</span><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">minPathSumDFSMem</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDFSMem</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDFSMem</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.c</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDFSMem</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.cs</span><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="cm">/* 最小路径和:记忆化搜索 */</span>
|
|
|
<a id="__codelineno-18-2" name="__codelineno-18-2" href="#__codelineno-18-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDFSMem</span><span class="p">(</span><span class="kt">int</span><span class="p">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="p">[][]</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-18-3" name="__codelineno-18-3" href="#__codelineno-18-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
|
|
|
<a id="__codelineno-18-4" name="__codelineno-18-4" href="#__codelineno-18-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">&&</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-18-5" name="__codelineno-18-5" href="#__codelineno-18-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">][</span><span class="m">0</span><span class="p">];</span>
|
|
|
<a id="__codelineno-18-6" name="__codelineno-18-6" href="#__codelineno-18-6"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-18-7" name="__codelineno-18-7" href="#__codelineno-18-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
|
|
|
<a id="__codelineno-18-8" name="__codelineno-18-8" href="#__codelineno-18-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="m">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-18-9" name="__codelineno-18-9" href="#__codelineno-18-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="kt">int</span><span class="p">.</span><span class="n">MaxValue</span><span class="p">;</span>
|
|
|
<a id="__codelineno-18-10" name="__codelineno-18-10" href="#__codelineno-18-10"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-18-11" name="__codelineno-18-11" href="#__codelineno-18-11"></a><span class="w"> </span><span class="c1">// 若已有记录,则直接返回</span>
|
|
|
<a id="__codelineno-18-12" name="__codelineno-18-12" href="#__codelineno-18-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="m">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-18-13" name="__codelineno-18-13" href="#__codelineno-18-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-18-14" name="__codelineno-18-14" href="#__codelineno-18-14"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-18-15" name="__codelineno-18-15" href="#__codelineno-18-15"></a><span class="w"> </span><span class="c1">// 左边和上边单元格的最小路径代价</span>
|
|
|
<a id="__codelineno-18-16" name="__codelineno-18-16" href="#__codelineno-18-16"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFSMem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">);</span>
|
|
|
<a id="__codelineno-18-17" name="__codelineno-18-17" href="#__codelineno-18-17"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">minPathSumDFSMem</span><span class="p">(</span><span class="n">grid</span><span class="p">,</span><span class="w"> </span><span class="n">mem</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
|
|
|
<a id="__codelineno-18-18" name="__codelineno-18-18" href="#__codelineno-18-18"></a><span class="w"> </span><span class="c1">// 记录并返回左上角到 (i, j) 的最小路径代价</span>
|
|
|
<a id="__codelineno-18-19" name="__codelineno-18-19" href="#__codelineno-18-19"></a><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Min</span><span class="p">(</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-18-20" name="__codelineno-18-20" href="#__codelineno-18-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">mem</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-18-21" name="__codelineno-18-21" href="#__codelineno-18-21"></a><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.swift</span><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">minPathSumDFSMem</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.zig</span><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDFSMem</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.dart</span><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDFSMem</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
</div>
|
|
|
</div>
|
|
|
<p>如下图所示,引入记忆化可以消除所有重复计算,时间复杂度取决于状态总数,即网格尺寸 <span class="arithmatex">\(O(nm)\)</span> 。</p>
|
|
|
<p><img alt="记忆化搜索递归树" src="../dp_solution_pipeline.assets/min_path_sum_dfs_mem.png" /></p>
|
|
|
<p align="center"> Fig. 记忆化搜索递归树 </p>
|
|
|
|
|
|
<h2 id="1335">13.3.5. 方法三:动态规划<a class="headerlink" href="#1335" title="Permanent link">¶</a></h2>
|
|
|
<p>动态规划代码是从底至顶的,仅需循环即可实现。</p>
|
|
|
<div class="tabbed-set tabbed-alternate" data-tabs="3:11"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Java</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Python</label><label for="__tabbed_3_4">Go</label><label for="__tabbed_3_5">JavaScript</label><label for="__tabbed_3_6">TypeScript</label><label for="__tabbed_3_7">C</label><label for="__tabbed_3_8">C#</label><label for="__tabbed_3_9">Swift</label><label for="__tabbed_3_10">Zig</label><label for="__tabbed_3_11">Dart</label></div>
|
|
|
<div class="tabbed-content">
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.java</span><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a><span class="cm">/* 最小路径和:动态规划 */</span>
|
|
|
<a id="__codelineno-22-2" name="__codelineno-22-2" href="#__codelineno-22-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDP</span><span class="p">(</span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-22-3" name="__codelineno-22-3" href="#__codelineno-22-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">.</span><span class="na">length</span><span class="p">,</span><span class="w"> </span><span class="n">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="mi">0</span><span class="o">]</span><span class="p">.</span><span class="na">length</span><span class="p">;</span>
|
|
|
<a id="__codelineno-22-4" name="__codelineno-22-4" href="#__codelineno-22-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
|
|
<a id="__codelineno-22-5" name="__codelineno-22-5" href="#__codelineno-22-5"></a><span class="w"> </span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="o">][</span><span class="n">m</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-22-6" name="__codelineno-22-6" href="#__codelineno-22-6"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">0</span><span class="o">][</span><span class="mi">0</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="mi">0</span><span class="o">][</span><span class="mi">0</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-22-7" name="__codelineno-22-7" href="#__codelineno-22-7"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
|
|
|
<a id="__codelineno-22-8" name="__codelineno-22-8" href="#__codelineno-22-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-22-9" name="__codelineno-22-9" href="#__codelineno-22-9"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">0</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">0</span><span class="o">][</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="mi">0</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-22-10" name="__codelineno-22-10" href="#__codelineno-22-10"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-22-11" name="__codelineno-22-11" href="#__codelineno-22-11"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
|
|
|
<a id="__codelineno-22-12" name="__codelineno-22-12" href="#__codelineno-22-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-22-13" name="__codelineno-22-13" href="#__codelineno-22-13"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="mi">0</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="mi">0</span><span class="o">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="mi">0</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-22-14" name="__codelineno-22-14" href="#__codelineno-22-14"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-22-15" name="__codelineno-22-15" href="#__codelineno-22-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余行列</span>
|
|
|
<a id="__codelineno-22-16" name="__codelineno-22-16" href="#__codelineno-22-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-22-17" name="__codelineno-22-17" href="#__codelineno-22-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-22-18" name="__codelineno-22-18" href="#__codelineno-22-18"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">min</span><span class="p">(</span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-22-19" name="__codelineno-22-19" href="#__codelineno-22-19"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-22-20" name="__codelineno-22-20" href="#__codelineno-22-20"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-22-21" name="__codelineno-22-21" href="#__codelineno-22-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">][</span><span class="n">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-22-22" name="__codelineno-22-22" href="#__codelineno-22-22"></a><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.cpp</span><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a><span class="cm">/* 最小路径和:动态规划 */</span>
|
|
|
<a id="__codelineno-23-2" name="__codelineno-23-2" href="#__codelineno-23-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDP</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">>></span><span class="w"> </span><span class="o">&</span><span class="n">grid</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-23-3" name="__codelineno-23-3" href="#__codelineno-23-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">.</span><span class="n">size</span><span class="p">(),</span><span class="w"> </span><span class="n">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">].</span><span class="n">size</span><span class="p">();</span>
|
|
|
<a id="__codelineno-23-4" name="__codelineno-23-4" href="#__codelineno-23-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
|
|
<a id="__codelineno-23-5" name="__codelineno-23-5" href="#__codelineno-23-5"></a><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">>></span><span class="w"> </span><span class="n">dp</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="p">(</span><span class="n">m</span><span class="p">));</span>
|
|
|
<a id="__codelineno-23-6" name="__codelineno-23-6" href="#__codelineno-23-6"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">];</span>
|
|
|
<a id="__codelineno-23-7" name="__codelineno-23-7" href="#__codelineno-23-7"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
|
|
|
<a id="__codelineno-23-8" name="__codelineno-23-8" href="#__codelineno-23-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-23-9" name="__codelineno-23-9" href="#__codelineno-23-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-23-10" name="__codelineno-23-10" href="#__codelineno-23-10"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-23-11" name="__codelineno-23-11" href="#__codelineno-23-11"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
|
|
|
<a id="__codelineno-23-12" name="__codelineno-23-12" href="#__codelineno-23-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-23-13" name="__codelineno-23-13" href="#__codelineno-23-13"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">];</span>
|
|
|
<a id="__codelineno-23-14" name="__codelineno-23-14" href="#__codelineno-23-14"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-23-15" name="__codelineno-23-15" href="#__codelineno-23-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余行列</span>
|
|
|
<a id="__codelineno-23-16" name="__codelineno-23-16" href="#__codelineno-23-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-23-17" name="__codelineno-23-17" href="#__codelineno-23-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-23-18" name="__codelineno-23-18" href="#__codelineno-23-18"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">j</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-23-19" name="__codelineno-23-19" href="#__codelineno-23-19"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-23-20" name="__codelineno-23-20" href="#__codelineno-23-20"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-23-21" name="__codelineno-23-21" href="#__codelineno-23-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">][</span><span class="n">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
|
|
|
<a id="__codelineno-23-22" name="__codelineno-23-22" href="#__codelineno-23-22"></a><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.py</span><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="k">def</span> <span class="nf">min_path_sum_dp</span><span class="p">(</span><span class="n">grid</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]])</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
|
|
<a id="__codelineno-24-2" name="__codelineno-24-2" href="#__codelineno-24-2"></a><span class="w"> </span><span class="sd">"""最小路径和:动态规划"""</span>
|
|
|
<a id="__codelineno-24-3" name="__codelineno-24-3" href="#__codelineno-24-3"></a> <span class="n">n</span><span class="p">,</span> <span class="n">m</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">grid</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
|
|
|
<a id="__codelineno-24-4" name="__codelineno-24-4" href="#__codelineno-24-4"></a> <span class="c1"># 初始化 dp 表</span>
|
|
|
<a id="__codelineno-24-5" name="__codelineno-24-5" href="#__codelineno-24-5"></a> <span class="n">dp</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">m</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">)]</span>
|
|
|
<a id="__codelineno-24-6" name="__codelineno-24-6" href="#__codelineno-24-6"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
|
|
|
<a id="__codelineno-24-7" name="__codelineno-24-7" href="#__codelineno-24-7"></a> <span class="c1"># 状态转移:首行</span>
|
|
|
<a id="__codelineno-24-8" name="__codelineno-24-8" href="#__codelineno-24-8"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">m</span><span class="p">):</span>
|
|
|
<a id="__codelineno-24-9" name="__codelineno-24-9" href="#__codelineno-24-9"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
|
|
|
<a id="__codelineno-24-10" name="__codelineno-24-10" href="#__codelineno-24-10"></a> <span class="c1"># 状态转移:首列</span>
|
|
|
<a id="__codelineno-24-11" name="__codelineno-24-11" href="#__codelineno-24-11"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">):</span>
|
|
|
<a id="__codelineno-24-12" name="__codelineno-24-12" href="#__codelineno-24-12"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
|
|
|
<a id="__codelineno-24-13" name="__codelineno-24-13" href="#__codelineno-24-13"></a> <span class="c1"># 状态转移:其余行列</span>
|
|
|
<a id="__codelineno-24-14" name="__codelineno-24-14" href="#__codelineno-24-14"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">):</span>
|
|
|
<a id="__codelineno-24-15" name="__codelineno-24-15" href="#__codelineno-24-15"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">m</span><span class="p">):</span>
|
|
|
<a id="__codelineno-24-16" name="__codelineno-24-16" href="#__codelineno-24-16"></a> <span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span> <span class="o">-</span> <span class="mi">1</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="n">i</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="n">j</span><span class="p">])</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
|
|
|
<a id="__codelineno-24-17" name="__codelineno-24-17" href="#__codelineno-24-17"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">][</span><span class="n">m</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.go</span><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">minPathSumDP</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDP</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDP</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.c</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDP</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.cs</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 最小路径和:动态规划 */</span>
|
|
|
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDP</span><span class="p">(</span><span class="kt">int</span><span class="p">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">.</span><span class="n">Length</span><span class="p">,</span><span class="w"> </span><span class="n">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">].</span><span class="n">Length</span><span class="p">;</span>
|
|
|
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
|
|
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="kt">int</span><span class="p">[,]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">n</span><span class="p">,</span><span class="w"> </span><span class="n">m</span><span class="p">];</span>
|
|
|
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">][</span><span class="m">0</span><span class="p">];</span>
|
|
|
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
|
|
|
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
|
|
|
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="m">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="m">0</span><span class="p">];</span>
|
|
|
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余行列</span>
|
|
|
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-29-20" name="__codelineno-29-20" href="#__codelineno-29-20"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-29-21" name="__codelineno-29-21" href="#__codelineno-29-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">,</span><span class="w"> </span><span class="n">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
|
|
|
<a id="__codelineno-29-22" name="__codelineno-29-22" href="#__codelineno-29-22"></a><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.swift</span><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">minPathSumDP</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.zig</span><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDP</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.dart</span><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDP</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
</div>
|
|
|
</div>
|
|
|
<p>下图展示了最小路径和的状态转移过程。该过程遍历了整个网格,因此时间复杂度为 <span class="arithmatex">\(O(nm)\)</span> ;数组 <code>dp</code> 使用 <span class="arithmatex">\(O(nm)\)</span> 空间。</p>
|
|
|
<div class="tabbed-set tabbed-alternate" data-tabs="4:12"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><input id="__tabbed_4_5" name="__tabbed_4" type="radio" /><input id="__tabbed_4_6" name="__tabbed_4" type="radio" /><input id="__tabbed_4_7" name="__tabbed_4" type="radio" /><input id="__tabbed_4_8" name="__tabbed_4" type="radio" /><input id="__tabbed_4_9" name="__tabbed_4" type="radio" /><input id="__tabbed_4_10" name="__tabbed_4" type="radio" /><input id="__tabbed_4_11" name="__tabbed_4" type="radio" /><input id="__tabbed_4_12" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1"><1></label><label for="__tabbed_4_2"><2></label><label for="__tabbed_4_3"><3></label><label for="__tabbed_4_4"><4></label><label for="__tabbed_4_5"><5></label><label for="__tabbed_4_6"><6></label><label for="__tabbed_4_7"><7></label><label for="__tabbed_4_8"><8></label><label for="__tabbed_4_9"><9></label><label for="__tabbed_4_10"><10></label><label for="__tabbed_4_11"><11></label><label for="__tabbed_4_12"><12></label></div>
|
|
|
<div class="tabbed-content">
|
|
|
<div class="tabbed-block">
|
|
|
<p><img alt="最小路径和的动态规划过程" src="../dp_solution_pipeline.assets/min_path_sum_dp_step1.png" /></p>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<p><img alt="min_path_sum_dp_step2" src="../dp_solution_pipeline.assets/min_path_sum_dp_step2.png" /></p>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<p><img alt="min_path_sum_dp_step3" src="../dp_solution_pipeline.assets/min_path_sum_dp_step3.png" /></p>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<p><img alt="min_path_sum_dp_step4" src="../dp_solution_pipeline.assets/min_path_sum_dp_step4.png" /></p>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<p><img alt="min_path_sum_dp_step5" src="../dp_solution_pipeline.assets/min_path_sum_dp_step5.png" /></p>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<p><img alt="min_path_sum_dp_step6" src="../dp_solution_pipeline.assets/min_path_sum_dp_step6.png" /></p>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<p><img alt="min_path_sum_dp_step7" src="../dp_solution_pipeline.assets/min_path_sum_dp_step7.png" /></p>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<p><img alt="min_path_sum_dp_step8" src="../dp_solution_pipeline.assets/min_path_sum_dp_step8.png" /></p>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<p><img alt="min_path_sum_dp_step9" src="../dp_solution_pipeline.assets/min_path_sum_dp_step9.png" /></p>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<p><img alt="min_path_sum_dp_step10" src="../dp_solution_pipeline.assets/min_path_sum_dp_step10.png" /></p>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<p><img alt="min_path_sum_dp_step11" src="../dp_solution_pipeline.assets/min_path_sum_dp_step11.png" /></p>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<p><img alt="min_path_sum_dp_step12" src="../dp_solution_pipeline.assets/min_path_sum_dp_step12.png" /></p>
|
|
|
</div>
|
|
|
</div>
|
|
|
</div>
|
|
|
<p>如果希望进一步节省空间使用,可以考虑进行状态压缩。每个格子只与左边和上边的格子有关,因此我们可以只用一个单行数组来实现 <span class="arithmatex">\(dp\)</span> 表。</p>
|
|
|
<p>由于数组 <code>dp</code> 只能表示一行的状态,因此我们无法提前初始化首列状态,而是在遍历每行中更新它。</p>
|
|
|
<div class="tabbed-set tabbed-alternate" data-tabs="5:11"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><input id="__tabbed_5_11" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Java</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Python</label><label for="__tabbed_5_4">Go</label><label for="__tabbed_5_5">JavaScript</label><label for="__tabbed_5_6">TypeScript</label><label for="__tabbed_5_7">C</label><label for="__tabbed_5_8">C#</label><label for="__tabbed_5_9">Swift</label><label for="__tabbed_5_10">Zig</label><label for="__tabbed_5_11">Dart</label></div>
|
|
|
<div class="tabbed-content">
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.java</span><pre><span></span><code><a id="__codelineno-33-1" name="__codelineno-33-1" href="#__codelineno-33-1"></a><span class="cm">/* 最小路径和:状态压缩后的动态规划 */</span>
|
|
|
<a id="__codelineno-33-2" name="__codelineno-33-2" href="#__codelineno-33-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDPComp</span><span class="p">(</span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-33-3" name="__codelineno-33-3" href="#__codelineno-33-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">.</span><span class="na">length</span><span class="p">,</span><span class="w"> </span><span class="n">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="mi">0</span><span class="o">]</span><span class="p">.</span><span class="na">length</span><span class="p">;</span>
|
|
|
<a id="__codelineno-33-4" name="__codelineno-33-4" href="#__codelineno-33-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
|
|
<a id="__codelineno-33-5" name="__codelineno-33-5" href="#__codelineno-33-5"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">m</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-33-6" name="__codelineno-33-6" href="#__codelineno-33-6"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
|
|
|
<a id="__codelineno-33-7" name="__codelineno-33-7" href="#__codelineno-33-7"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">0</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="mi">0</span><span class="o">][</span><span class="mi">0</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-33-8" name="__codelineno-33-8" href="#__codelineno-33-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-33-9" name="__codelineno-33-9" href="#__codelineno-33-9"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="mi">0</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-33-10" name="__codelineno-33-10" href="#__codelineno-33-10"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-33-11" name="__codelineno-33-11" href="#__codelineno-33-11"></a><span class="w"> </span><span class="c1">// 状态转移:其余行</span>
|
|
|
<a id="__codelineno-33-12" name="__codelineno-33-12" href="#__codelineno-33-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-33-13" name="__codelineno-33-13" href="#__codelineno-33-13"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
|
|
|
<a id="__codelineno-33-14" name="__codelineno-33-14" href="#__codelineno-33-14"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">0</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">0</span><span class="o">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="mi">0</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-33-15" name="__codelineno-33-15" href="#__codelineno-33-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余列</span>
|
|
|
<a id="__codelineno-33-16" name="__codelineno-33-16" href="#__codelineno-33-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-33-17" name="__codelineno-33-17" href="#__codelineno-33-17"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="na">min</span><span class="p">(</span><span class="n">dp</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">,</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="o">[</span><span class="n">i</span><span class="o">][</span><span class="n">j</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-33-18" name="__codelineno-33-18" href="#__codelineno-33-18"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-33-19" name="__codelineno-33-19" href="#__codelineno-33-19"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-33-20" name="__codelineno-33-20" href="#__codelineno-33-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="n">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
|
|
|
<a id="__codelineno-33-21" name="__codelineno-33-21" href="#__codelineno-33-21"></a><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.cpp</span><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="cm">/* 最小路径和:状态压缩后的动态规划 */</span>
|
|
|
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDPComp</span><span class="p">(</span><span class="n">vector</span><span class="o"><</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">>></span><span class="w"> </span><span class="o">&</span><span class="n">grid</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-34-3" name="__codelineno-34-3" href="#__codelineno-34-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">.</span><span class="n">size</span><span class="p">(),</span><span class="w"> </span><span class="n">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">].</span><span class="n">size</span><span class="p">();</span>
|
|
|
<a id="__codelineno-34-4" name="__codelineno-34-4" href="#__codelineno-34-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
|
|
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">dp</span><span class="p">(</span><span class="n">m</span><span class="p">);</span>
|
|
|
<a id="__codelineno-34-6" name="__codelineno-34-6" href="#__codelineno-34-6"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
|
|
|
<a id="__codelineno-34-7" name="__codelineno-34-7" href="#__codelineno-34-7"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">];</span>
|
|
|
<a id="__codelineno-34-8" name="__codelineno-34-8" href="#__codelineno-34-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-34-9" name="__codelineno-34-9" href="#__codelineno-34-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-34-10" name="__codelineno-34-10" href="#__codelineno-34-10"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-34-11" name="__codelineno-34-11" href="#__codelineno-34-11"></a><span class="w"> </span><span class="c1">// 状态转移:其余行</span>
|
|
|
<a id="__codelineno-34-12" name="__codelineno-34-12" href="#__codelineno-34-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-34-13" name="__codelineno-34-13" href="#__codelineno-34-13"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
|
|
|
<a id="__codelineno-34-14" name="__codelineno-34-14" href="#__codelineno-34-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">];</span>
|
|
|
<a id="__codelineno-34-15" name="__codelineno-34-15" href="#__codelineno-34-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余列</span>
|
|
|
<a id="__codelineno-34-16" name="__codelineno-34-16" href="#__codelineno-34-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-34-17" name="__codelineno-34-17" href="#__codelineno-34-17"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-34-18" name="__codelineno-34-18" href="#__codelineno-34-18"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-34-19" name="__codelineno-34-19" href="#__codelineno-34-19"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-34-20" name="__codelineno-34-20" href="#__codelineno-34-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span>
|
|
|
<a id="__codelineno-34-21" name="__codelineno-34-21" href="#__codelineno-34-21"></a><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.py</span><pre><span></span><code><a id="__codelineno-35-1" name="__codelineno-35-1" href="#__codelineno-35-1"></a><span class="k">def</span> <span class="nf">min_path_sum_dp_comp</span><span class="p">(</span><span class="n">grid</span><span class="p">:</span> <span class="nb">list</span><span class="p">[</span><span class="nb">list</span><span class="p">[</span><span class="nb">int</span><span class="p">]])</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span>
|
|
|
<a id="__codelineno-35-2" name="__codelineno-35-2" href="#__codelineno-35-2"></a><span class="w"> </span><span class="sd">"""最小路径和:状态压缩后的动态规划"""</span>
|
|
|
<a id="__codelineno-35-3" name="__codelineno-35-3" href="#__codelineno-35-3"></a> <span class="n">n</span><span class="p">,</span> <span class="n">m</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">grid</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
|
|
|
<a id="__codelineno-35-4" name="__codelineno-35-4" href="#__codelineno-35-4"></a> <span class="c1"># 初始化 dp 表</span>
|
|
|
<a id="__codelineno-35-5" name="__codelineno-35-5" href="#__codelineno-35-5"></a> <span class="n">dp</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">m</span>
|
|
|
<a id="__codelineno-35-6" name="__codelineno-35-6" href="#__codelineno-35-6"></a> <span class="c1"># 状态转移:首行</span>
|
|
|
<a id="__codelineno-35-7" name="__codelineno-35-7" href="#__codelineno-35-7"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
|
|
|
<a id="__codelineno-35-8" name="__codelineno-35-8" href="#__codelineno-35-8"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">m</span><span class="p">):</span>
|
|
|
<a id="__codelineno-35-9" name="__codelineno-35-9" href="#__codelineno-35-9"></a> <span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="n">j</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
|
|
|
<a id="__codelineno-35-10" name="__codelineno-35-10" href="#__codelineno-35-10"></a> <span class="c1"># 状态转移:其余行</span>
|
|
|
<a id="__codelineno-35-11" name="__codelineno-35-11" href="#__codelineno-35-11"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">):</span>
|
|
|
<a id="__codelineno-35-12" name="__codelineno-35-12" href="#__codelineno-35-12"></a> <span class="c1"># 状态转移:首列</span>
|
|
|
<a id="__codelineno-35-13" name="__codelineno-35-13" href="#__codelineno-35-13"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">dp</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span>
|
|
|
<a id="__codelineno-35-14" name="__codelineno-35-14" href="#__codelineno-35-14"></a> <span class="c1"># 状态转移:其余列</span>
|
|
|
<a id="__codelineno-35-15" name="__codelineno-35-15" href="#__codelineno-35-15"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">m</span><span class="p">):</span>
|
|
|
<a id="__codelineno-35-16" name="__codelineno-35-16" href="#__codelineno-35-16"></a> <span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">j</span> <span class="o">-</span> <span class="mi">1</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">])</span> <span class="o">+</span> <span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">]</span>
|
|
|
<a id="__codelineno-35-17" name="__codelineno-35-17" href="#__codelineno-35-17"></a> <span class="k">return</span> <span class="n">dp</span><span class="p">[</span><span class="n">m</span> <span class="o">-</span> <span class="mi">1</span><span class="p">]</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.go</span><pre><span></span><code><a id="__codelineno-36-1" name="__codelineno-36-1" href="#__codelineno-36-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">minPathSumDPComp</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-37-1" name="__codelineno-37-1" href="#__codelineno-37-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDPComp</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDPComp</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.c</span><pre><span></span><code><a id="__codelineno-39-1" name="__codelineno-39-1" href="#__codelineno-39-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDPComp</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.cs</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="cm">/* 最小路径和:状态压缩后的动态规划 */</span>
|
|
|
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">minPathSumDPComp</span><span class="p">(</span><span class="kt">int</span><span class="p">[][]</span><span class="w"> </span><span class="n">grid</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">.</span><span class="n">Length</span><span class="p">,</span><span class="w"> </span><span class="n">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">].</span><span class="n">Length</span><span class="p">;</span>
|
|
|
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
|
|
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">m</span><span class="p">];</span>
|
|
|
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">][</span><span class="m">0</span><span class="p">];</span>
|
|
|
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
|
|
|
<a id="__codelineno-40-8" name="__codelineno-40-8" href="#__codelineno-40-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-40-9" name="__codelineno-40-9" href="#__codelineno-40-9"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="m">0</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-40-10" name="__codelineno-40-10" href="#__codelineno-40-10"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-40-11" name="__codelineno-40-11" href="#__codelineno-40-11"></a><span class="w"> </span><span class="c1">// 状态转移:其余行</span>
|
|
|
<a id="__codelineno-40-12" name="__codelineno-40-12" href="#__codelineno-40-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-40-13" name="__codelineno-40-13" href="#__codelineno-40-13"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
|
|
|
<a id="__codelineno-40-14" name="__codelineno-40-14" href="#__codelineno-40-14"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="m">0</span><span class="p">];</span>
|
|
|
<a id="__codelineno-40-15" name="__codelineno-40-15" href="#__codelineno-40-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余列</span>
|
|
|
<a id="__codelineno-40-16" name="__codelineno-40-16" href="#__codelineno-40-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="n">m</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
|
|
<a id="__codelineno-40-17" name="__codelineno-40-17" href="#__codelineno-40-17"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">Math</span><span class="p">.</span><span class="n">Min</span><span class="p">(</span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">],</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">j</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">grid</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="n">j</span><span class="p">];</span>
|
|
|
<a id="__codelineno-40-18" name="__codelineno-40-18" href="#__codelineno-40-18"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-40-19" name="__codelineno-40-19" href="#__codelineno-40-19"></a><span class="w"> </span><span class="p">}</span>
|
|
|
<a id="__codelineno-40-20" name="__codelineno-40-20" href="#__codelineno-40-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="n">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
|
|
|
<a id="__codelineno-40-21" name="__codelineno-40-21" href="#__codelineno-40-21"></a><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.swift</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">minPathSumDPComp</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.zig</span><pre><span></span><code><a id="__codelineno-42-1" name="__codelineno-42-1" href="#__codelineno-42-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDPComp</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
<div class="tabbed-block">
|
|
|
<div class="highlight"><span class="filename">min_path_sum.dart</span><pre><span></span><code><a id="__codelineno-43-1" name="__codelineno-43-1" href="#__codelineno-43-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">minPathSumDPComp</span><span class="p">}</span>
|
|
|
</code></pre></div>
|
|
|
</div>
|
|
|
</div>
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<h2 id="__comments">评论</h2>
|
|
|
<!-- Insert generated snippet here -->
|
|
|
<script
|
|
|
src="https://giscus.app/client.js"
|
|
|
data-repo="krahets/hello-algo"
|
|
|
data-repo-id="R_kgDOIXtSqw"
|
|
|
data-category="Announcements"
|
|
|
data-category-id="DIC_kwDOIXtSq84CSZk_"
|
|
|
data-mapping="pathname"
|
|
|
data-strict="1"
|
|
|
data-reactions-enabled="1"
|
|
|
data-emit-metadata="0"
|
|
|
data-input-position="top"
|
|
|
data-theme="preferred_color_scheme"
|
|
|
data-lang="zh-CN"
|
|
|
crossorigin="anonymous"
|
|
|
async
|
|
|
>
|
|
|
</script>
|
|
|
<!-- Synchronize Giscus theme with palette -->
|
|
|
<script>
|
|
|
var giscus = document.querySelector("script[src*=giscus]")
|
|
|
|
|
|
/* Set palette on initial load */
|
|
|
var palette = __md_get("__palette")
|
|
|
if (palette && typeof palette.color === "object") {
|
|
|
var theme = palette.color.scheme === "slate" ? "dark" : "light"
|
|
|
giscus.setAttribute("data-theme", theme)
|
|
|
}
|
|
|
|
|
|
/* Register event handlers after documented loaded */
|
|
|
document.addEventListener("DOMContentLoaded", function() {
|
|
|
var ref = document.querySelector("[data-md-component=palette]")
|
|
|
ref.addEventListener("change", function() {
|
|
|
var palette = __md_get("__palette")
|
|
|
if (palette && typeof palette.color === "object") {
|
|
|
var theme = palette.color.scheme === "slate" ? "dark" : "light"
|
|
|
|
|
|
/* Instruct Giscus to change theme */
|
|
|
var frame = document.querySelector(".giscus-frame")
|
|
|
frame.contentWindow.postMessage(
|
|
|
{ giscus: { setConfig: { theme } } },
|
|
|
"https://giscus.app"
|
|
|
)
|
|
|
}
|
|
|
})
|
|
|
})
|
|
|
</script>
|
|
|
|
|
|
|
|
|
</article>
|
|
|
</div>
|
|
|
|
|
|
|
|
|
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<button type="button" class="md-top md-icon" data-md-component="top" hidden>
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M13 20h-2V8l-5.5 5.5-1.42-1.42L12 4.16l7.92 7.92-1.42 1.42L13 8v12Z"/></svg>
|
|
|
回到页面顶部
|
|
|
</button>
|
|
|
|
|
|
</main>
|
|
|
|
|
|
<footer class="md-footer">
|
|
|
|
|
|
|
|
|
|
|
|
<nav class="md-footer__inner md-grid" aria-label="页脚" >
|
|
|
|
|
|
|
|
|
<a href="../dp_problem_features/" class="md-footer__link md-footer__link--prev" aria-label="上一页: 13.2. &nbsp; DP 问题特性(New)" rel="prev">
|
|
|
<div class="md-footer__button md-icon">
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
|
|
|
</div>
|
|
|
<div class="md-footer__title">
|
|
|
<span class="md-footer__direction">
|
|
|
上一页
|
|
|
</span>
|
|
|
<div class="md-ellipsis">
|
|
|
13.2. DP 问题特性(New)
|
|
|
</div>
|
|
|
</div>
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
<a href="../knapsack_problem/" class="md-footer__link md-footer__link--next" aria-label="下一页: 13.4. &nbsp; 0-1 背包问题(New)" rel="next">
|
|
|
<div class="md-footer__title">
|
|
|
<span class="md-footer__direction">
|
|
|
下一页
|
|
|
</span>
|
|
|
<div class="md-ellipsis">
|
|
|
13.4. 0-1 背包问题(New)
|
|
|
</div>
|
|
|
</div>
|
|
|
<div class="md-footer__button md-icon">
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M4 11v2h12l-5.5 5.5 1.42 1.42L19.84 12l-7.92-7.92L10.5 5.5 16 11H4Z"/></svg>
|
|
|
</div>
|
|
|
</a>
|
|
|
|
|
|
</nav>
|
|
|
|
|
|
|
|
|
<div class="md-footer-meta md-typeset">
|
|
|
<div class="md-footer-meta__inner md-grid">
|
|
|
<div class="md-copyright">
|
|
|
|
|
|
<div class="md-copyright__highlight">
|
|
|
Copyright © 2023 Krahets
|
|
|
</div>
|
|
|
|
|
|
|
|
|
</div>
|
|
|
|
|
|
<div class="md-social">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg>
|
|
|
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
|
|
|
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
|
|
|
</a>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
</div>
|
|
|
</footer>
|
|
|
|
|
|
</div>
|
|
|
<div class="md-dialog" data-md-component="dialog">
|
|
|
<div class="md-dialog__inner md-typeset"></div>
|
|
|
</div>
|
|
|
|
|
|
<script id="__config" type="application/json">{"base": "../..", "features": ["content.action.edit", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.top", "navigation.footer", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.208ed371.min.js", "translations": {"clipboard.copied": "\u5df2\u590d\u5236", "clipboard.copy": "\u590d\u5236", "search.result.more.one": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.more.other": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 # \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.none": "\u6ca1\u6709\u627e\u5230\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.other": "# \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.placeholder": "\u952e\u5165\u4ee5\u5f00\u59cb\u641c\u7d22", "search.result.term.missing": "\u7f3a\u5c11", "select.version": "\u9009\u62e9\u5f53\u524d\u7248\u672c"}}</script>
|
|
|
|
|
|
|
|
|
<script src="../../assets/javascripts/bundle.fac441b0.min.js"></script>
|
|
|
|
|
|
<script src="../../javascripts/mathjax.js"></script>
|
|
|
|
|
|
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
|
|
|
|
|
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
|
|
|
|
|
|
|
|
</body>
|
|
|
</html> |