|
|
---
|
|
|
comments: true
|
|
|
---
|
|
|
|
|
|
# 10.2. 二分查找边界
|
|
|
|
|
|
在上一节中,题目规定数组中所有元素都是唯一的。如果目标元素在数组中多次出现,上节介绍的方法只能保证返回其中一个目标元素的索引,**而无法确定该索引的左边和右边还有多少目标元素**。
|
|
|
|
|
|
!!! question
|
|
|
|
|
|
给定一个长度为 $n$ 的有序数组 `nums` ,数组可能包含重复元素。请查找并返回元素 `target` 在数组中首次出现的索引。若数组中不包含该元素,则返回 $-1$ 。
|
|
|
|
|
|
## 10.2.1. 简单方法
|
|
|
|
|
|
为了查找数组中最左边的 `target` ,我们可以分为两步:
|
|
|
|
|
|
1. 进行二分查找,定位到任意一个 `target` 的索引,记为 $k$ ;
|
|
|
2. 以索引 $k$ 为起始点,向左进行线性遍历,找到最左边的 `target` 返回即可。
|
|
|
|
|
|
![线性查找最左边的元素](binary_search_edge.assets/binary_search_left_edge_naive.png)
|
|
|
|
|
|
<p align="center"> Fig. 线性查找最左边的元素 </p>
|
|
|
|
|
|
这个方法虽然有效,但由于包含线性查找,**其时间复杂度可能会劣化至 $O(n)$** 。
|
|
|
|
|
|
## 10.2.2. 二分方法
|
|
|
|
|
|
实际上,我们可以仅通过二分查找解决以上问题。整体算法流程不变,先计算中点索引 $m$ ,再判断 `target` 和 `nums[m]` 大小关系:
|
|
|
|
|
|
- 当 `nums[m] < target` 或 `nums[m] > target` 时,说明还没有找到 `target` ,因此采取与上节代码相同的缩小区间操作,**从而使指针 $i$ 和 $j$ 向 `target` 靠近**。
|
|
|
- 当 `nums[m] == target` 时,说明“小于 `target` 的元素”在区间 $[i, m - 1]$ 中,因此采用 $j = m - 1$ 来缩小区间,**从而使指针 $j$ 向小于 `target` 的元素靠近**。
|
|
|
|
|
|
二分查找完成后,**$i$ 指向最左边的 `target` ,$j$ 指向首个小于 `target` 的元素**,因此返回索引 $i$ 即可。
|
|
|
|
|
|
=== "<1>"
|
|
|
![二分查找最左边元素的步骤](binary_search_edge.assets/binary_search_left_edge_step1.png)
|
|
|
|
|
|
=== "<2>"
|
|
|
![binary_search_left_edge_step2](binary_search_edge.assets/binary_search_left_edge_step2.png)
|
|
|
|
|
|
=== "<3>"
|
|
|
![binary_search_left_edge_step3](binary_search_edge.assets/binary_search_left_edge_step3.png)
|
|
|
|
|
|
=== "<4>"
|
|
|
![binary_search_left_edge_step4](binary_search_edge.assets/binary_search_left_edge_step4.png)
|
|
|
|
|
|
=== "<5>"
|
|
|
![binary_search_left_edge_step5](binary_search_edge.assets/binary_search_left_edge_step5.png)
|
|
|
|
|
|
=== "<6>"
|
|
|
![binary_search_left_edge_step6](binary_search_edge.assets/binary_search_left_edge_step6.png)
|
|
|
|
|
|
=== "<7>"
|
|
|
![binary_search_left_edge_step7](binary_search_edge.assets/binary_search_left_edge_step7.png)
|
|
|
|
|
|
=== "<8>"
|
|
|
![binary_search_left_edge_step8](binary_search_edge.assets/binary_search_left_edge_step8.png)
|
|
|
|
|
|
注意,数组可能不包含目标元素 `target` 。因此在函数返回前,我们需要先判断 `nums[i]` 与 `target` 是否相等,以及索引 $i$ 是否越界。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="binary_search_edge.java"
|
|
|
/* 二分查找最左一个元素 */
|
|
|
int binarySearchLeftEdge(int[] nums, int target) {
|
|
|
int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
|
|
|
while (i <= j) {
|
|
|
int m = i + (j - i) / 2; // 计算中点索引 m
|
|
|
if (nums[m] < target)
|
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
|
else if (nums[m] > target)
|
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
|
else
|
|
|
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
|
}
|
|
|
if (i == nums.length || nums[i] != target)
|
|
|
return -1; // 未找到目标元素,返回 -1
|
|
|
return i;
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="binary_search_edge.cpp"
|
|
|
/* 二分查找最左一个元素 */
|
|
|
int binarySearchLeftEdge(vector<int> &nums, int target) {
|
|
|
int i = 0, j = nums.size() - 1; // 初始化双闭区间 [0, n-1]
|
|
|
while (i <= j) {
|
|
|
int m = i + (j - i) / 2; // 计算中点索引 m
|
|
|
if (nums[m] < target)
|
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
|
else if (nums[m] > target)
|
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
|
else
|
|
|
j = m - 1; // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
|
}
|
|
|
if (i == nums.size() || nums[i] != target)
|
|
|
return -1; // 未找到目标元素,返回 -1
|
|
|
return i;
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="binary_search_edge.py"
|
|
|
def binary_search_left_edge(nums: list[int], target: int) -> int:
|
|
|
"""二分查找最左一个元素"""
|
|
|
i, j = 0, len(nums) - 1 # 初始化双闭区间 [0, n-1]
|
|
|
while i <= j:
|
|
|
m = (i + j) // 2 # 计算中点索引 m
|
|
|
if nums[m] < target:
|
|
|
i = m + 1 # target 在区间 [m+1, j] 中
|
|
|
elif nums[m] > target:
|
|
|
j = m - 1 # target 在区间 [i, m-1] 中
|
|
|
else:
|
|
|
j = m - 1 # 首个小于 target 的元素在区间 [i, m-1] 中
|
|
|
if i == len(nums) or nums[i] != target:
|
|
|
return -1 # 未找到目标元素,返回 -1
|
|
|
return i
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="binary_search_edge.go"
|
|
|
/* 二分查找最左一个元素 */
|
|
|
func binarySearchLeftEdge(nums []int, target int) int {
|
|
|
// 初始化双闭区间 [0, n-1]
|
|
|
i, j := 0, len(nums)-1
|
|
|
for i <= j {
|
|
|
// 计算中点索引 m
|
|
|
m := i + (j-i)/2
|
|
|
if nums[m] < target {
|
|
|
// target 在区间 [m+1, j] 中
|
|
|
i = m + 1
|
|
|
} else if nums[m] > target {
|
|
|
// target 在区间 [i, m-1] 中
|
|
|
j = m - 1
|
|
|
} else {
|
|
|
// 首个小于 target 的元素在区间 [i, m-1] 中
|
|
|
j = m - 1
|
|
|
}
|
|
|
}
|
|
|
if i == len(nums) || nums[i] != target {
|
|
|
// 未找到目标元素,返回 -1
|
|
|
return -1
|
|
|
}
|
|
|
return i
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="binary_search_edge.js"
|
|
|
[class]{}-[func]{binarySearchLeftEdge}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="binary_search_edge.ts"
|
|
|
[class]{}-[func]{binarySearchLeftEdge}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="binary_search_edge.c"
|
|
|
[class]{}-[func]{binarySearchLeftEdge}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="binary_search_edge.cs"
|
|
|
[class]{binary_search_edge}-[func]{binarySearchLeftEdge}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="binary_search_edge.swift"
|
|
|
/* 二分查找最左一个元素 */
|
|
|
func binarySearchLeftEdge(nums: [Int], target: Int) -> Int {
|
|
|
// 初始化双闭区间 [0, n-1]
|
|
|
var i = 0
|
|
|
var j = nums.count - 1
|
|
|
while i <= j {
|
|
|
let m = i + (j - 1) / 2 // 计算中点索引 m
|
|
|
if nums[m] < target {
|
|
|
i = m + 1 // target 在区间 [m+1, j] 中
|
|
|
} else if nums[m] > target {
|
|
|
j = m - 1 // target 在区间 [i, m-1] 中
|
|
|
} else {
|
|
|
j = m - 1 // 首个小于 target 的元素在区间 [i, m-1] 中
|
|
|
}
|
|
|
}
|
|
|
if i == nums.count || nums[i] != target {
|
|
|
return -1 // 未找到目标元素,返回 -1
|
|
|
}
|
|
|
return i
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="binary_search_edge.zig"
|
|
|
[class]{}-[func]{binarySearchLeftEdge}
|
|
|
```
|
|
|
|
|
|
## 10.2.3. 查找右边界
|
|
|
|
|
|
类似地,我们也可以二分查找最右边的 `target` 。当 `nums[m] == target` 时,说明大于 `target` 的元素在区间 $[m + 1, j]$ 中,因此执行 `i = m + 1` ,**使得指针 $i$ 向大于 `target` 的元素靠近**。
|
|
|
|
|
|
完成二分后,**$i$ 指向首个大于 `target` 的元素,$j$ 指向最右边的 `target`** ,因此返回索引 $j$ 即可。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="binary_search_edge.java"
|
|
|
/* 二分查找最右一个元素 */
|
|
|
int binarySearchRightEdge(int[] nums, int target) {
|
|
|
int i = 0, j = nums.length - 1; // 初始化双闭区间 [0, n-1]
|
|
|
while (i <= j) {
|
|
|
int m = i + (j - i) / 2; // 计算中点索引 m
|
|
|
if (nums[m] < target)
|
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
|
else if (nums[m] > target)
|
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
|
else
|
|
|
i = m + 1; // 首个大于 target 的元素在区间 [m+1, j] 中
|
|
|
}
|
|
|
if (j < 0 || nums[j] != target)
|
|
|
return -1; // 未找到目标元素,返回 -1
|
|
|
return j;
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="binary_search_edge.cpp"
|
|
|
/* 二分查找最右一个元素 */
|
|
|
int binarySearchRightEdge(vector<int> &nums, int target) {
|
|
|
int i = 0, j = nums.size() - 1; // 初始化双闭区间 [0, n-1]
|
|
|
while (i <= j) {
|
|
|
int m = i + (j - i) / 2; // 计算中点索引 m
|
|
|
if (nums[m] < target)
|
|
|
i = m + 1; // target 在区间 [m+1, j] 中
|
|
|
else if (nums[m] > target)
|
|
|
j = m - 1; // target 在区间 [i, m-1] 中
|
|
|
else
|
|
|
i = m + 1; // 首个大于 target 的元素在区间 [m+1, j] 中
|
|
|
}
|
|
|
if (j < 0 || nums[j] != target)
|
|
|
return -1; // 未找到目标元素,返回 -1
|
|
|
return j;
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="binary_search_edge.py"
|
|
|
def binary_search_right_edge(nums: list[int], target: int) -> int:
|
|
|
"""二分查找最右一个元素"""
|
|
|
i, j = 0, len(nums) - 1 # 初始化双闭区间 [0, n-1]
|
|
|
while i <= j:
|
|
|
m = (i + j) // 2 # 计算中点索引 m
|
|
|
if nums[m] < target:
|
|
|
i = m + 1 # target 在区间 [m+1, j] 中
|
|
|
elif nums[m] > target:
|
|
|
j = m - 1 # target 在区间 [i, m-1] 中
|
|
|
else:
|
|
|
i = m + 1 # 首个大于 target 的元素在区间 [m+1, j] 中
|
|
|
if j == len(nums) or nums[j] != target:
|
|
|
return -1 # 未找到目标元素,返回 -1
|
|
|
return j
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="binary_search_edge.go"
|
|
|
/* 二分查找最右一个元素 */
|
|
|
func binarySearchRightEdge(nums []int, target int) int {
|
|
|
// 初始化双闭区间 [0, n-1]
|
|
|
i, j := 0, len(nums)-1
|
|
|
for i <= j {
|
|
|
// 计算中点索引 m
|
|
|
m := i + (j-i)/2
|
|
|
if nums[m] < target {
|
|
|
// target 在区间 [m+1, j] 中
|
|
|
i = m + 1
|
|
|
} else if nums[m] > target {
|
|
|
// target 在区间 [i, m-1] 中
|
|
|
j = m - 1
|
|
|
} else {
|
|
|
// 首个大于 target 的元素在区间 [m+1, j] 中
|
|
|
i = m + 1
|
|
|
}
|
|
|
}
|
|
|
if j < 0 || nums[j] != target {
|
|
|
// 未找到目标元素,返回 -1
|
|
|
return -1
|
|
|
}
|
|
|
return j
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="binary_search_edge.js"
|
|
|
[class]{}-[func]{binarySearchRightEdge}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="binary_search_edge.ts"
|
|
|
[class]{}-[func]{binarySearchRightEdge}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="binary_search_edge.c"
|
|
|
[class]{}-[func]{binarySearchRightEdge}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="binary_search_edge.cs"
|
|
|
[class]{binary_search_edge}-[func]{binarySearchRightEdge}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="binary_search_edge.swift"
|
|
|
/* 二分查找最右一个元素 */
|
|
|
func binarySearchRightEdge(nums: [Int], target: Int) -> Int {
|
|
|
// 初始化双闭区间 [0, n-1]
|
|
|
var i = 0
|
|
|
var j = nums.count - 1
|
|
|
while i <= j {
|
|
|
let m = i + (j - i) / 2 // 计算中点索引 m
|
|
|
if nums[m] < target {
|
|
|
i = m + 1 // target 在区间 [m+1, j] 中
|
|
|
} else if nums[m] > target {
|
|
|
j = m - 1 // target 在区间 [i, m-1] 中
|
|
|
} else {
|
|
|
i = m + 1 // 首个大于 target 的元素在区间 [m+1, j] 中
|
|
|
}
|
|
|
}
|
|
|
if j < 0 || nums[j] != target {
|
|
|
return -1 // 未找到目标元素,返回 -1
|
|
|
}
|
|
|
return j
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="binary_search_edge.zig"
|
|
|
[class]{}-[func]{binarySearchRightEdge}
|
|
|
```
|
|
|
|
|
|
观察下图,搜索最右边元素时指针 $j$ 的作用与搜索最左边元素时指针 $i$ 的作用一致,反之亦然。也就是说,**搜索最左边元素和最右边元素的实现是镜像对称的**。
|
|
|
|
|
|
![查找最左边和最右边元素的对称性](binary_search_edge.assets/binary_search_left_right_edge.png)
|
|
|
|
|
|
<p align="center"> Fig. 查找最左边和最右边元素的对称性 </p>
|
|
|
|
|
|
!!! tip
|
|
|
|
|
|
以上代码采取的都是“双闭区间”写法。有兴趣的读者可以自行实现“左闭右开”写法。
|