|
|
# AVL 树 *
|
|
|
|
|
|
在「二叉搜索树」章节中提到,在进行多次插入与删除操作后,二叉搜索树可能会退化为链表。此时所有操作的时间复杂度都会由 $O(\log n)$ 劣化至 $O(n)$ 。
|
|
|
|
|
|
如下图所示,执行两步删除结点后,该二叉搜索树就会退化为链表。
|
|
|
|
|
|
![AVL 树在删除结点后发生退化](avl_tree.assets/avltree_degradation_from_removing_node.png)
|
|
|
|
|
|
再比如,在以下完美二叉树中插入两个结点后,树严重向左偏斜,查找操作的时间复杂度也随之发生劣化。
|
|
|
|
|
|
![AVL 树在插入结点后发生退化](avl_tree.assets/avltree_degradation_from_inserting_node.png)
|
|
|
|
|
|
G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorithm for the organization of information" 中提出了「AVL 树」。**论文中描述了一系列操作,使得在不断添加与删除结点后,AVL 树仍然不会发生退化**,进而使得各种操作的时间复杂度均能保持在 $O(\log n)$ 级别。
|
|
|
|
|
|
换言之,在频繁增删查改的使用场景中,AVL 树可始终保持很高的数据增删查改效率,具有很好的应用价值。
|
|
|
|
|
|
## AVL 树常见术语
|
|
|
|
|
|
「AVL 树」既是「二叉搜索树」又是「平衡二叉树」,同时满足这两种二叉树的所有性质,因此又被称为「平衡二叉搜索树」。
|
|
|
|
|
|
### 结点高度
|
|
|
|
|
|
在 AVL 树的操作中,需要获取结点「高度 Height」,所以给 AVL 树的结点类添加 `height` 变量。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title=""
|
|
|
/* AVL 树结点类 */
|
|
|
class TreeNode {
|
|
|
public int val; // 结点值
|
|
|
public int height; // 结点高度
|
|
|
public TreeNode left; // 左子结点
|
|
|
public TreeNode right; // 右子结点
|
|
|
public TreeNode(int x) { val = x; }
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title=""
|
|
|
/* AVL 树结点类 */
|
|
|
struct TreeNode {
|
|
|
int val{}; // 结点值
|
|
|
int height = 0; // 结点高度
|
|
|
TreeNode *left{}; // 左子结点
|
|
|
TreeNode *right{}; // 右子结点
|
|
|
TreeNode() = default;
|
|
|
explicit TreeNode(int x) : val(x){}
|
|
|
};
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title=""
|
|
|
""" AVL 树结点类 """
|
|
|
class TreeNode:
|
|
|
def __init__(self, val: int):
|
|
|
self.val: int = val # 结点值
|
|
|
self.height: int = 0 # 结点高度
|
|
|
self.left: Optional[TreeNode] = None # 左子结点引用
|
|
|
self.right: Optional[TreeNode] = None # 右子结点引用
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title=""
|
|
|
/* AVL 树结点类 */
|
|
|
type TreeNode struct {
|
|
|
Val int // 结点值
|
|
|
Height int // 结点高度
|
|
|
Left *TreeNode // 左子结点引用
|
|
|
Right *TreeNode // 右子结点引用
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title=""
|
|
|
class TreeNode {
|
|
|
val; // 结点值
|
|
|
height; //结点高度
|
|
|
left; // 左子结点指针
|
|
|
right; // 右子结点指针
|
|
|
constructor(val, left, right, height) {
|
|
|
this.val = val === undefined ? 0 : val;
|
|
|
this.height = height === undefined ? 0 : height;
|
|
|
this.left = left === undefined ? null : left;
|
|
|
this.right = right === undefined ? null : right;
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title=""
|
|
|
class TreeNode {
|
|
|
val: number; // 结点值
|
|
|
height: number; // 结点高度
|
|
|
left: TreeNode | null; // 左子结点指针
|
|
|
right: TreeNode | null; // 右子结点指针
|
|
|
constructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {
|
|
|
this.val = val === undefined ? 0 : val;
|
|
|
this.height = height === undefined ? 0 : height;
|
|
|
this.left = left === undefined ? null : left;
|
|
|
this.right = right === undefined ? null : right;
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title=""
|
|
|
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title=""
|
|
|
/* AVL 树结点类 */
|
|
|
class TreeNode {
|
|
|
public int val; // 结点值
|
|
|
public int height; // 结点高度
|
|
|
public TreeNode? left; // 左子结点
|
|
|
public TreeNode? right; // 右子结点
|
|
|
public TreeNode(int x) { val = x; }
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title=""
|
|
|
/* AVL 树结点类 */
|
|
|
class TreeNode {
|
|
|
var val: Int // 结点值
|
|
|
var height: Int // 结点高度
|
|
|
var left: TreeNode? // 左子结点
|
|
|
var right: TreeNode? // 右子结点
|
|
|
|
|
|
init(x: Int) {
|
|
|
val = x
|
|
|
height = 0
|
|
|
}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title=""
|
|
|
|
|
|
```
|
|
|
|
|
|
「结点高度」是最远叶结点到该结点的距离,即走过的「边」的数量。需要特别注意,**叶结点的高度为 0 ,空结点的高度为 -1**。我们封装两个工具函数,分别用于获取与更新结点的高度。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="avl_tree.java"
|
|
|
[class]{AVLTree}-[func]{height}
|
|
|
|
|
|
[class]{AVLTree}-[func]{updateHeight}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="avl_tree.cpp"
|
|
|
[class]{AVLTree}-[func]{height}
|
|
|
|
|
|
[class]{AVLTree}-[func]{updateHeight}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="avl_tree.py"
|
|
|
[class]{AVLTree}-[func]{height}
|
|
|
|
|
|
[class]{AVLTree}-[func]{__update_height}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="avl_tree.go"
|
|
|
[class]{aVLTree}-[func]{height}
|
|
|
|
|
|
[class]{aVLTree}-[func]{updateHeight}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="avl_tree.js"
|
|
|
[class]{AVLTree}-[func]{height}
|
|
|
|
|
|
[class]{AVLTree}-[func]{#updateHeight}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="avl_tree.ts"
|
|
|
[class]{AVLTree}-[func]{height}
|
|
|
|
|
|
[class]{AVLTree}-[func]{updateHeight}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="avl_tree.c"
|
|
|
[class]{aVLTree}-[func]{height}
|
|
|
|
|
|
[class]{aVLTree}-[func]{updateHeight}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="avl_tree.cs"
|
|
|
[class]{AVLTree}-[func]{height}
|
|
|
|
|
|
[class]{AVLTree}-[func]{updateHeight}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="avl_tree.swift"
|
|
|
[class]{AVLTree}-[func]{height}
|
|
|
|
|
|
[class]{AVLTree}-[func]{updateHeight}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="avl_tree.zig"
|
|
|
[class]{AVLTree}-[func]{height}
|
|
|
|
|
|
[class]{AVLTree}-[func]{updateHeight}
|
|
|
```
|
|
|
|
|
|
### 结点平衡因子
|
|
|
|
|
|
结点的「平衡因子 Balance Factor」是 **结点的左子树高度减去右子树高度**,并定义空结点的平衡因子为 0 。同样地,我们将获取结点平衡因子封装成函数,以便后续使用。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="avl_tree.java"
|
|
|
[class]{AVLTree}-[func]{balanceFactor}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="avl_tree.cpp"
|
|
|
[class]{AVLTree}-[func]{balanceFactor}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="avl_tree.py"
|
|
|
[class]{AVLTree}-[func]{balance_factor}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="avl_tree.go"
|
|
|
[class]{aVLTree}-[func]{balanceFactor}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="avl_tree.js"
|
|
|
[class]{AVLTree}-[func]{balanceFactor}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="avl_tree.ts"
|
|
|
[class]{AVLTree}-[func]{balanceFactor}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="avl_tree.c"
|
|
|
[class]{aVLTree}-[func]{balanceFactor}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="avl_tree.cs"
|
|
|
[class]{AVLTree}-[func]{balanceFactor}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="avl_tree.swift"
|
|
|
[class]{AVLTree}-[func]{balanceFactor}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="avl_tree.zig"
|
|
|
[class]{AVLTree}-[func]{balanceFactor}
|
|
|
```
|
|
|
|
|
|
!!! note
|
|
|
|
|
|
设平衡因子为 $f$ ,则一棵 AVL 树的任意结点的平衡因子皆满足 $-1 \le f \le 1$ 。
|
|
|
|
|
|
## AVL 树旋转
|
|
|
|
|
|
AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影响二叉树中序遍历序列的前提下,使失衡结点重新恢复平衡**。换言之,旋转操作既可以使树保持为「二叉搜索树」,也可以使树重新恢复为「平衡二叉树」。
|
|
|
|
|
|
我们将平衡因子的绝对值 $> 1$ 的结点称为「失衡结点」。根据结点的失衡情况,旋转操作分为 **右旋、左旋、先右旋后左旋、先左旋后右旋**,接下来我们来一起来看看它们是如何操作的。
|
|
|
|
|
|
### Case 1 - 右旋
|
|
|
|
|
|
如下图所示(结点下方为「平衡因子」),从底至顶看,二叉树中首个失衡结点是 **结点 3**。我们聚焦在以该失衡结点为根结点的子树上,将该结点记为 `node` ,将其左子结点记为 `child` ,执行「右旋」操作。完成右旋后,该子树已经恢复平衡,并且仍然为二叉搜索树。
|
|
|
|
|
|
=== "<1>"
|
|
|
![右旋操作步骤](avl_tree.assets/avltree_right_rotate_step1.png)
|
|
|
|
|
|
=== "<2>"
|
|
|
![avltree_right_rotate_step2](avl_tree.assets/avltree_right_rotate_step2.png)
|
|
|
|
|
|
=== "<3>"
|
|
|
![avltree_right_rotate_step3](avl_tree.assets/avltree_right_rotate_step3.png)
|
|
|
|
|
|
=== "<4>"
|
|
|
![avltree_right_rotate_step4](avl_tree.assets/avltree_right_rotate_step4.png)
|
|
|
|
|
|
进而,如果结点 `child` 本身有右子结点(记为 `grandChild` ),则需要在「右旋」中添加一步:将 `grandChild` 作为 `node` 的左子结点。
|
|
|
|
|
|
![有 grandChild 的右旋操作](avl_tree.assets/avltree_right_rotate_with_grandchild.png)
|
|
|
|
|
|
“向右旋转”是一种形象化的说法,实际需要通过修改结点指针实现,代码如下所示。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="avl_tree.java"
|
|
|
[class]{AVLTree}-[func]{rightRotate}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="avl_tree.cpp"
|
|
|
[class]{AVLTree}-[func]{rightRotate}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="avl_tree.py"
|
|
|
[class]{AVLTree}-[func]{__right_rotate}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="avl_tree.go"
|
|
|
[class]{aVLTree}-[func]{rightRotate}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="avl_tree.js"
|
|
|
[class]{AVLTree}-[func]{#rightRotate}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="avl_tree.ts"
|
|
|
[class]{AVLTree}-[func]{rightRotate}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="avl_tree.c"
|
|
|
[class]{aVLTree}-[func]{rightRotate}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="avl_tree.cs"
|
|
|
[class]{AVLTree}-[func]{rightRotate}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="avl_tree.swift"
|
|
|
[class]{AVLTree}-[func]{rightRotate}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="avl_tree.zig"
|
|
|
[class]{AVLTree}-[func]{rightRotate}
|
|
|
```
|
|
|
|
|
|
### Case 2 - 左旋
|
|
|
|
|
|
类似地,如果将取上述失衡二叉树的“镜像”,那么则需要「左旋」操作。
|
|
|
|
|
|
![左旋操作](avl_tree.assets/avltree_left_rotate.png)
|
|
|
|
|
|
同理,若结点 `child` 本身有左子结点(记为 `grandChild` ),则需要在「左旋」中添加一步:将 `grandChild` 作为 `node` 的右子结点。
|
|
|
|
|
|
![有 grandChild 的左旋操作](avl_tree.assets/avltree_left_rotate_with_grandchild.png)
|
|
|
|
|
|
观察发现,**「左旋」和「右旋」操作是镜像对称的,两者对应解决的两种失衡情况也是对称的**。根据对称性,我们可以很方便地从「右旋」推导出「左旋」。具体地,只需将「右旋」代码中的把所有的 `left` 替换为 `right` 、所有的 `right` 替换为 `left` ,即可得到「左旋」代码。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="avl_tree.java"
|
|
|
[class]{AVLTree}-[func]{leftRotate}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="avl_tree.cpp"
|
|
|
[class]{AVLTree}-[func]{leftRotate}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="avl_tree.py"
|
|
|
[class]{AVLTree}-[func]{__left_rotate}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="avl_tree.go"
|
|
|
[class]{aVLTree}-[func]{leftRotate}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="avl_tree.js"
|
|
|
[class]{AVLTree}-[func]{#leftRotate}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="avl_tree.ts"
|
|
|
[class]{AVLTree}-[func]{leftRotate}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="avl_tree.c"
|
|
|
[class]{aVLTree}-[func]{leftRotate}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="avl_tree.cs"
|
|
|
[class]{AVLTree}-[func]{leftRotate}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="avl_tree.swift"
|
|
|
[class]{AVLTree}-[func]{leftRotate}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="avl_tree.zig"
|
|
|
[class]{AVLTree}-[func]{leftRotate}
|
|
|
```
|
|
|
|
|
|
### Case 3 - 先左后右
|
|
|
|
|
|
对于下图的失衡结点 3 ,**单一使用左旋或右旋都无法使子树恢复平衡**,此时需要「先左旋后右旋」,即先对 `child` 执行「左旋」,再对 `node` 执行「右旋」。
|
|
|
|
|
|
![先左旋后右旋](avl_tree.assets/avltree_left_right_rotate.png)
|
|
|
|
|
|
### Case 4 - 先右后左
|
|
|
|
|
|
同理,取以上失衡二叉树的镜像,则需要「先右旋后左旋」,即先对 `child` 执行「右旋」,然后对 `node` 执行「左旋」。
|
|
|
|
|
|
![先右旋后左旋](avl_tree.assets/avltree_right_left_rotate.png)
|
|
|
|
|
|
### 旋转的选择
|
|
|
|
|
|
下图描述的四种失衡情况与上述 Cases 逐个对应,分别需采用 **右旋、左旋、先右后左、先左后右** 的旋转操作。
|
|
|
|
|
|
![AVL 树的四种旋转情况](avl_tree.assets/avltree_rotation_cases.png)
|
|
|
|
|
|
具体地,在代码中使用 **失衡结点的平衡因子、较高一侧子结点的平衡因子** 来确定失衡结点属于上图中的哪种情况。
|
|
|
|
|
|
<div class="center-table" markdown>
|
|
|
|
|
|
| 失衡结点的平衡因子 | 子结点的平衡因子 | 应采用的旋转方法 |
|
|
|
| ------------------ | ---------------- | ---------------- |
|
|
|
| $>0$ (即左偏树) | $\geq 0$ | 右旋 |
|
|
|
| $>0$ (即左偏树) | $<0$ | 先左旋后右旋 |
|
|
|
| $<0$ (即右偏树) | $\leq 0$ | 左旋 |
|
|
|
| $<0$ (即右偏树) | $>0$ | 先右旋后左旋 |
|
|
|
|
|
|
</div>
|
|
|
|
|
|
为方便使用,我们将旋转操作封装成一个函数。至此,**我们可以使用此函数来旋转各种失衡情况,使失衡结点重新恢复平衡**。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="avl_tree.java"
|
|
|
[class]{AVLTree}-[func]{rotate}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="avl_tree.cpp"
|
|
|
[class]{AVLTree}-[func]{rotate}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="avl_tree.py"
|
|
|
[class]{AVLTree}-[func]{__rotate}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="avl_tree.go"
|
|
|
[class]{aVLTree}-[func]{rotate}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="avl_tree.js"
|
|
|
[class]{AVLTree}-[func]{#rotate}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="avl_tree.ts"
|
|
|
[class]{AVLTree}-[func]{rotate}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="avl_tree.c"
|
|
|
[class]{aVLTree}-[func]{rotate}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="avl_tree.cs"
|
|
|
[class]{AVLTree}-[func]{rotate}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="avl_tree.swift"
|
|
|
[class]{AVLTree}-[func]{rotate}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="avl_tree.zig"
|
|
|
[class]{AVLTree}-[func]{rotate}
|
|
|
```
|
|
|
|
|
|
## AVL 树常用操作
|
|
|
|
|
|
### 插入结点
|
|
|
|
|
|
「AVL 树」的结点插入操作与「二叉搜索树」主体类似。不同的是,在插入结点后,从该结点到根结点的路径上会出现一系列「失衡结点」。所以,**我们需要从该结点开始,从底至顶地执行旋转操作,使所有失衡结点恢复平衡**。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="avl_tree.java"
|
|
|
[class]{AVLTree}-[func]{insert}
|
|
|
|
|
|
[class]{AVLTree}-[func]{insertHelper}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="avl_tree.cpp"
|
|
|
[class]{AVLTree}-[func]{insert}
|
|
|
|
|
|
[class]{AVLTree}-[func]{insertHelper}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="avl_tree.py"
|
|
|
[class]{AVLTree}-[func]{insert}
|
|
|
|
|
|
[class]{AVLTree}-[func]{__insert_helper}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="avl_tree.go"
|
|
|
[class]{aVLTree}-[func]{insert}
|
|
|
|
|
|
[class]{aVLTree}-[func]{insertHelper}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="avl_tree.js"
|
|
|
[class]{AVLTree}-[func]{insert}
|
|
|
|
|
|
[class]{AVLTree}-[func]{#insertHelper}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="avl_tree.ts"
|
|
|
[class]{AVLTree}-[func]{insert}
|
|
|
|
|
|
[class]{AVLTree}-[func]{insertHelper}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="avl_tree.c"
|
|
|
[class]{aVLTree}-[func]{insert}
|
|
|
|
|
|
[class]{aVLTree}-[func]{insertHelper}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="avl_tree.cs"
|
|
|
[class]{AVLTree}-[func]{insert}
|
|
|
|
|
|
[class]{AVLTree}-[func]{insertHelper}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="avl_tree.swift"
|
|
|
[class]{AVLTree}-[func]{insert}
|
|
|
|
|
|
[class]{AVLTree}-[func]{insertHelper}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="avl_tree.zig"
|
|
|
[class]{AVLTree}-[func]{insert}
|
|
|
|
|
|
[class]{AVLTree}-[func]{insertHelper}
|
|
|
```
|
|
|
|
|
|
### 删除结点
|
|
|
|
|
|
「AVL 树」删除结点操作与「二叉搜索树」删除结点操作总体相同。类似地,**在删除结点后,也需要从底至顶地执行旋转操作,使所有失衡结点恢复平衡**。
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
```java title="avl_tree.java"
|
|
|
[class]{AVLTree}-[func]{remove}
|
|
|
|
|
|
[class]{AVLTree}-[func]{removeHelper}
|
|
|
|
|
|
[class]{AVLTree}-[func]{getInOrderNext}
|
|
|
```
|
|
|
|
|
|
=== "C++"
|
|
|
|
|
|
```cpp title="avl_tree.cpp"
|
|
|
[class]{AVLTree}-[func]{remove}
|
|
|
|
|
|
[class]{AVLTree}-[func]{removeHelper}
|
|
|
|
|
|
[class]{AVLTree}-[func]{getInOrderNext}
|
|
|
```
|
|
|
|
|
|
=== "Python"
|
|
|
|
|
|
```python title="avl_tree.py"
|
|
|
[class]{AVLTree}-[func]{remove}
|
|
|
|
|
|
[class]{AVLTree}-[func]{__remove_helper}
|
|
|
|
|
|
[class]{AVLTree}-[func]{__get_inorder_next}
|
|
|
```
|
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
```go title="avl_tree.go"
|
|
|
[class]{aVLTree}-[func]{remove}
|
|
|
|
|
|
[class]{aVLTree}-[func]{removeHelper}
|
|
|
|
|
|
[class]{aVLTree}-[func]{getInOrderNext}
|
|
|
```
|
|
|
|
|
|
=== "JavaScript"
|
|
|
|
|
|
```javascript title="avl_tree.js"
|
|
|
[class]{AVLTree}-[func]{remove}
|
|
|
|
|
|
[class]{AVLTree}-[func]{#removeHelper}
|
|
|
|
|
|
[class]{AVLTree}-[func]{#getInOrderNext}
|
|
|
```
|
|
|
|
|
|
=== "TypeScript"
|
|
|
|
|
|
```typescript title="avl_tree.ts"
|
|
|
[class]{AVLTree}-[func]{remove}
|
|
|
|
|
|
[class]{AVLTree}-[func]{removeHelper}
|
|
|
|
|
|
[class]{AVLTree}-[func]{getInOrderNext}
|
|
|
```
|
|
|
|
|
|
=== "C"
|
|
|
|
|
|
```c title="avl_tree.c"
|
|
|
[class]{aVLTree}-[func]{remove}
|
|
|
|
|
|
[class]{aVLTree}-[func]{removeHelper}
|
|
|
|
|
|
[class]{aVLTree}-[func]{getInOrderNext}
|
|
|
```
|
|
|
|
|
|
=== "C#"
|
|
|
|
|
|
```csharp title="avl_tree.cs"
|
|
|
[class]{AVLTree}-[func]{remove}
|
|
|
|
|
|
[class]{AVLTree}-[func]{removeHelper}
|
|
|
|
|
|
[class]{AVLTree}-[func]{getInOrderNext}
|
|
|
```
|
|
|
|
|
|
=== "Swift"
|
|
|
|
|
|
```swift title="avl_tree.swift"
|
|
|
[class]{AVLTree}-[func]{remove}
|
|
|
|
|
|
[class]{AVLTree}-[func]{removeHelper}
|
|
|
|
|
|
[class]{AVLTree}-[func]{getInOrderNext}
|
|
|
```
|
|
|
|
|
|
=== "Zig"
|
|
|
|
|
|
```zig title="avl_tree.zig"
|
|
|
[class]{AVLTree}-[func]{remove}
|
|
|
|
|
|
[class]{AVLTree}-[func]{removeHelper}
|
|
|
|
|
|
[class]{AVLTree}-[func]{getInOrderNext}
|
|
|
```
|
|
|
|
|
|
### 查找结点
|
|
|
|
|
|
「AVL 树」的结点查找操作与「二叉搜索树」一致,在此不再赘述。
|
|
|
|
|
|
## AVL 树典型应用
|
|
|
|
|
|
- 组织存储大型数据,适用于高频查找、低频增删场景;
|
|
|
- 用于建立数据库中的索引系统;
|
|
|
|
|
|
!!! question "为什么红黑树比 AVL 树更受欢迎?"
|
|
|
|
|
|
红黑树的平衡条件相对宽松,因此在红黑树中插入与删除结点所需的旋转操作相对更少,结点增删操作相比 AVL 树的效率更高。
|