You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/zh-hant/codes/python/chapter_dynamic_programming/knapsack.py

102 lines
3.3 KiB

"""
File: knapsack.py
Created Time: 2023-07-03
Author: krahets (krahets@163.com)
"""
def knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int:
"""0-1 背包:暴力搜尋"""
# 若已選完所有物品或背包無剩餘容量,則返回價值 0
if i == 0 or c == 0:
return 0
# 若超過背包容量,則只能選擇不放入背包
if wgt[i - 1] > c:
return knapsack_dfs(wgt, val, i - 1, c)
# 計算不放入和放入物品 i 的最大價值
no = knapsack_dfs(wgt, val, i - 1, c)
yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
# 返回兩種方案中價值更大的那一個
return max(no, yes)
def knapsack_dfs_mem(
wgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int
) -> int:
"""0-1 背包:記憶化搜尋"""
# 若已選完所有物品或背包無剩餘容量,則返回價值 0
if i == 0 or c == 0:
return 0
# 若已有記錄,則直接返回
if mem[i][c] != -1:
return mem[i][c]
# 若超過背包容量,則只能選擇不放入背包
if wgt[i - 1] > c:
return knapsack_dfs_mem(wgt, val, mem, i - 1, c)
# 計算不放入和放入物品 i 的最大價值
no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
# 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = max(no, yes)
return mem[i][c]
def knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:
"""0-1 背包:動態規劃"""
n = len(wgt)
# 初始化 dp 表
dp = [[0] * (cap + 1) for _ in range(n + 1)]
# 狀態轉移
for i in range(1, n + 1):
for c in range(1, cap + 1):
if wgt[i - 1] > c:
# 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c]
else:
# 不選和選物品 i 這兩種方案的較大值
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
return dp[n][cap]
def knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:
"""0-1 背包:空間最佳化後的動態規劃"""
n = len(wgt)
# 初始化 dp 表
dp = [0] * (cap + 1)
# 狀態轉移
for i in range(1, n + 1):
# 倒序走訪
for c in range(cap, 0, -1):
if wgt[i - 1] > c:
# 若超過背包容量,則不選物品 i
dp[c] = dp[c]
else:
# 不選和選物品 i 這兩種方案的較大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
return dp[cap]
"""Driver Code"""
if __name__ == "__main__":
wgt = [10, 20, 30, 40, 50]
val = [50, 120, 150, 210, 240]
cap = 50
n = len(wgt)
# 暴力搜尋
res = knapsack_dfs(wgt, val, n, cap)
print(f"不超過背包容量的最大物品價值為 {res}")
# 記憶化搜尋
mem = [[-1] * (cap + 1) for _ in range(n + 1)]
res = knapsack_dfs_mem(wgt, val, mem, n, cap)
print(f"不超過背包容量的最大物品價值為 {res}")
# 動態規劃
res = knapsack_dp(wgt, val, cap)
print(f"不超過背包容量的最大物品價值為 {res}")
# 空間最佳化後的動態規劃
res = knapsack_dp_comp(wgt, val, cap)
print(f"不超過背包容量的最大物品價值為 {res}")