You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/docs/chapter_introduction/index.md

85 lines
4.9 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
comments: true
---
# 算法是什么
听到 “算法” 这个词,我们一般会联想到数学。但实际上,大多数算法并不包含复杂的数学,而更像是在考察基本逻辑,而这些逻辑在我们日常生活中处处可见。
在正式介绍算法之前,我想告诉你一件有趣的事:**其实,你在过去已经学会了很多算法,并且已经习惯将它们应用到日常生活中。** 接下来,我将介绍两个具体例子来佐证。
**例一:拼积木。** 一套积木,除了有许多部件之外,还会附送详细的拼装说明书。我们按照说明书上一步步操作,即可拼出复杂的积木模型。
如果从数据结构与算法的角度看,大大小小的「积木」就是数据结构,而「拼装说明书」上的一系列步骤就是算法。
**例二:查字典。** 在字典中,每个汉字都有一个对应的拼音,而字典是按照拼音的英文字母表顺序排列的。假设需要在字典中查询任意一个拼音首字母为 $r$ 的字,一般我们会这样做:
1. 打开字典大致一半页数的位置,查看此页的首字母是什么(假设为 $m$
2. 由于在英文字母表中 $r$ 在 $m$ 的后面,因此应排除字典前半部分,查找范围仅剩后半部分;
3. 循环执行步骤 1-2 ,直到找到拼音首字母为 $r$ 的页码时终止。
=== "Step 1"
![look_up_dictionary_step_1](index.assets/look_up_dictionary_step_1.png)
=== "Step 2"
![look_up_dictionary_step_2](index.assets/look_up_dictionary_step_2.png)
=== "Step 3"
![look_up_dictionary_step_3](index.assets/look_up_dictionary_step_3.png)
=== "Step 4"
![look_up_dictionary_step_4](index.assets/look_up_dictionary_step_4.png)
=== "Step 5"
![look_up_dictionary_step_5](index.assets/look_up_dictionary_step_5.png)
查字典这个小学生的标配技能,实际上就是大名鼎鼎的「二分查找」。从数据结构角度,我们可以将字典看作是一个已排序的「数组」;而从算法角度,我们可将上述查字典的一系列指令看作是「二分查找」算法。
小到烹饪一道菜、大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现,使我们可以通过编程将数据结构存储在内存中,也可以编写代码来调用 CPU, GPU 执行算法,从而将生活中的问题搬运到计算机中,更加高效地解决各式各样的复杂问题。
!!! tip
读到这里,如果你感到对数据结构、算法、数组、二分查找等此类概念一知半解,那么就太好了!因为这正是本书存在的价值,接下来,本书将会一步步地引导你进入数据结构与算法的知识殿堂。
## 算法是什么?
「算法 Algorithm」是在有限时间内解决问题的一组指令或操作步骤。算法具有以下特性
- 问题是明确的,需要拥有明确的输入和输出定义。
- 解具有确定性,即给定相同输入时,输出一定相同。
- 具有可行性,可在有限步骤、有限时间、有限内存空间下完成。
- 独立于编程语言,即可用多种语言实现。
## 数据结构是什么?
「数据结构 Data Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能数据结构的设计原则有
- 空间占用尽可能小,节省计算机内存。
- 数据操作尽量快,包括数据访问、添加、删除、更新等。
- 提供简洁的数据表示和逻辑信息,以便算法高效运行。
数据结构的设计是一个充满权衡的过程,这意味着如果获得某方面的优势,则往往需要在另一方面做出妥协。例如,链表相对于数组,数据添加删除操作更加方便,但牺牲了数据的访问速度;图相对于链表,提供了更多的逻辑信息,但需要占用更多的内存空间。
## 数据结构与算法的关系
「数据结构」与「算法」是高度相关、紧密嵌合的,体现在:
- 数据结构是算法的底座。数据结构为算法提供结构化存储的数据,以及操作数据的对应方法。
- 算法是发挥数据结构优势的舞台。数据结构仅存储数据信息,结合算法才可解决特定问题。
- 算法有对应最优的数据结构。给定算法,一般可基于不同的数据结构实现,而最终执行效率往往相差很大。
如果将数据结构与算法比作「LEGO 乐高」,数据结构就是乐高「积木」,而算法就是把积木拼成目标形态的一系列「操作步骤」。
![relationship_between_data_structure_and_algorithm](index.assets/relationship_between_data_structure_and_algorithm.png)
<p align="center"> Fig. 数据结构与算法的关系 </p>
!!! tip "约定俗成的习惯"
在实际讨论中,我们通常会将「数据结构与算法」简称为「算法」。例如,我们熟称的 LeetCode 算法题目,实际上同时考察了数据结构和算法两部分知识。