You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hello-algo/codes/python/chapter_tree/binary_search_tree.py

168 lines
5.0 KiB

"""
File: binary_search_tree.py
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
class BinarySearchTree:
"""二叉搜索树"""
def __init__(self, nums: list[int]) -> None:
"""构造方法"""
nums.sort()
self.__root = self.build_tree(nums, 0, len(nums) - 1)
def build_tree(
self, nums: list[int], start_index: int, end_index: int
) -> TreeNode | None:
"""构建二叉搜索树"""
if start_index > end_index:
return None
# 将数组中间节点作为根节点
mid: int = (start_index + end_index) // 2
root = TreeNode(nums[mid])
# 递归建立左子树和右子树
root.left = self.build_tree(
nums=nums, start_index=start_index, end_index=mid - 1
)
root.right = self.build_tree(
nums=nums, start_index=mid + 1, end_index=end_index
)
return root
@property
def root(self) -> TreeNode | None:
return self.__root
def search(self, num: int) -> TreeNode | None:
"""查找节点"""
cur: TreeNode | None = self.__root
# 循环查找,越过叶节点后跳出
while cur is not None:
# 目标节点在 cur 的右子树中
if cur.val < num:
cur = cur.right
# 目标节点在 cur 的左子树中
elif cur.val > num:
cur = cur.left
# 找到目标节点,跳出循环
else:
break
return cur
def insert(self, num: int) -> TreeNode | None:
"""插入节点"""
# 若树为空,直接提前返回
if self.__root is None:
return None
# 循环查找,越过叶节点后跳出
cur, pre = self.__root, None
while cur is not None:
# 找到重复节点,直接返回
if cur.val == num:
return None
pre = cur
# 插入位置在 cur 的右子树中
if cur.val < num:
cur = cur.right
# 插入位置在 cur 的左子树中
else:
cur = cur.left
# 插入节点 val
node = TreeNode(num)
if pre.val < num:
pre.right = node
else:
pre.left = node
return node
def remove(self, num: int) -> TreeNode | None:
"""删除节点"""
# 若树为空,直接提前返回
if self.__root is None:
return None
# 循环查找,越过叶节点后跳出
cur, pre = self.__root, None
while cur is not None:
# 找到待删除节点,跳出循环
if cur.val == num:
break
pre = cur
if cur.val < num: # 待删除节点在 cur 的右子树中
cur = cur.right
else: # 待删除节点在 cur 的左子树中
cur = cur.left
# 若无待删除节点,则直接返回
if cur is None:
return None
# 子节点数量 = 0 or 1
if cur.left is None or cur.right is None:
# 当子节点数量 = 0 / 1 时, child = null / 该子节点
child = cur.left or cur.right
# 删除节点 cur
if pre.left == cur:
pre.left = child
else:
pre.right = child
# 子节点数量 = 2
else:
# 获取中序遍历中 cur 的下一个节点
nex: TreeNode = self.get_inorder_next(cur.right)
tmp: int = nex.val
# 递归删除节点 nex
self.remove(nex.val)
# 将 nex 的值复制给 cur
cur.val = tmp
return cur
def get_inorder_next(self, root: TreeNode | None) -> TreeNode | None:
"""获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况)"""
if root is None:
return root
# 循环访问左子节点,直到叶节点时为最小节点,跳出
while root.left is not None:
root = root.left
return root
"""Driver Code"""
if __name__ == "__main__":
# 初始化二叉搜索树
nums = list(range(1, 16)) # [1, 2, ..., 15]
bst = BinarySearchTree(nums=nums)
print("\n初始化的二叉树为\n")
print_tree(bst.root)
# 查找节点
node = bst.search(7)
print("\n查找到的节点对象为: {},节点值 = {}".format(node, node.val))
# 插入节点
node = bst.insert(16)
print("\n插入节点 16 后,二叉树为\n")
print_tree(bst.root)
# 删除节点
bst.remove(1)
print("\n删除节点 1 后,二叉树为\n")
print_tree(bst.root)
bst.remove(2)
print("\n删除节点 2 后,二叉树为\n")
print_tree(bst.root)
bst.remove(4)
print("\n删除节点 4 后,二叉树为\n")
print_tree(bst.root)