12 KiB
comments |
---|
true |
2.4. 权衡时间与空间
理想情况下,我们希望算法的时间复杂度和空间复杂度都能够达到最优,而实际上,同时优化时间复杂度和空间复杂度是非常困难的。
降低时间复杂度,往往是以提升空间复杂度为代价的,反之亦然。我们把牺牲内存空间来提升算法运行速度的思路称为「以空间换时间」;反之,称之为「以时间换空间」。选择哪种思路取决于我们更看重哪个方面。
大多数情况下,时间都是比空间更宝贵的,只要空间复杂度不要太离谱、能接受就行,因此以空间换时间最为常用。
2.4.1. 示例题目 *
以 LeetCode 全站第一题 两数之和 为例。
!!! question "两数之和"
给定一个整数数组 `nums` 和一个整数目标值 `target` ,请你在该数组中找出“和”为目标值 `target` 的那两个整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
「暴力枚举」和「辅助哈希表」分别对应 空间最优 和 时间最优 的两种解法。本着时间比空间更宝贵的原则,后者是本题的最佳解法。
方法一:暴力枚举
考虑直接遍历所有所有可能性。通过开启一个两层循环,判断两个整数的和是否为 target
,若是则返回它俩的索引(即下标)即可。
=== "Java"
```java title="leetcode_two_sum.java"
/* 方法一:暴力枚举 */
int[] twoSumBruteForce(int[] nums, int target) {
int size = nums.length;
// 两层循环,时间复杂度 O(n^2)
for (int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
if (nums[i] + nums[j] == target)
return new int[] { i, j };
}
}
return new int[0];
}
```
=== "C++"
```cpp title="leetcode_two_sum.cpp"
/* 方法一:暴力枚举 */
vector<int> twoSumBruteForce(vector<int>& nums, int target) {
int size = nums.size();
// 两层循环,时间复杂度 O(n^2)
for (int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
if (nums[i] + nums[j] == target)
return { i, j };
}
}
return {};
}
```
=== "Python"
```python title="leetcode_two_sum.py"
def two_sum_brute_force(nums: list[int], target: int) -> list[int]:
""" 方法一:暴力枚举 """
# 两层循环,时间复杂度 O(n^2)
for i in range(len(nums) - 1):
for j in range(i + 1, len(nums)):
if nums[i] + nums[j] == target:
return [i, j]
return []
```
=== "Go"
```go title="leetcode_two_sum.go"
/* 方法一:暴力枚举 */
func twoSumBruteForce(nums []int, target int) []int {
size := len(nums)
// 两层循环,时间复杂度 O(n^2)
for i := 0; i < size-1; i++ {
for j := i + 1; i < size; j++ {
if nums[i]+nums[j] == target {
return []int{i, j}
}
}
}
return nil
}
```
=== "JavaScript"
```javascript title="leetcode_two_sum.js"
/* 方法一:暴力枚举 */
function twoSumBruteForce(nums, target) {
const n = nums.length;
// 两层循环,时间复杂度 O(n^2)
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
if (nums[i] + nums[j] === target) {
return [i, j];
}
}
}
return [];
}
```
=== "TypeScript"
```typescript title="leetcode_two_sum.ts"
/* 方法一:暴力枚举 */
function twoSumBruteForce(nums: number[], target: number): number[] {
const n = nums.length;
// 两层循环,时间复杂度 O(n^2)
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
if (nums[i] + nums[j] === target) {
return [i, j];
}
}
}
return [];
};
```
=== "C"
```c title="leetcode_two_sum.c"
[class]{}-[func]{twoSumBruteForce}
```
=== "C#"
```csharp title="leetcode_two_sum.cs"
/* 方法一:暴力枚举 */
int[] twoSumBruteForce(int[] nums, int target)
{
int size = nums.Length;
// 两层循环,时间复杂度 O(n^2)
for (int i = 0; i < size - 1; i++)
{
for (int j = i + 1; j < size; j++)
{
if (nums[i] + nums[j] == target)
return new int[] { i, j };
}
}
return new int[0];
}
```
=== "Swift"
```swift title="leetcode_two_sum.swift"
/* 方法一:暴力枚举 */
func twoSumBruteForce(nums: [Int], target: Int) -> [Int] {
// 两层循环,时间复杂度 O(n^2)
for i in nums.indices.dropLast() {
for j in nums.indices.dropFirst(i + 1) {
if nums[i] + nums[j] == target {
return [i, j]
}
}
}
return [0]
}
```
=== "Zig"
```zig title="leetcode_two_sum.zig"
// 方法一:暴力枚举
fn twoSumBruteForce(nums: []i32, target: i32) ?[2]i32 {
var size: usize = nums.len;
var i: usize = 0;
// 两层循环,时间复杂度 O(n^2)
while (i < size - 1) : (i += 1) {
var j = i + 1;
while (j < size) : (j += 1) {
if (nums[i] + nums[j] == target) {
return [_]i32{@intCast(i32, i), @intCast(i32, j)};
}
}
}
return null;
}
```
该方法的时间复杂度为 O(N^2)
,空间复杂度为 O(1)
,属于时间换空间。本方法时间复杂度较高,在大数据量下非常耗时。
方法二:辅助哈希表
考虑借助一个哈希表,key 为数组元素、value 为元素索引。循环遍历数组中的每个元素 num
,并执行:
- 判断数字
target - num
是否在哈希表中,若是则直接返回该两个元素的索引; - 将元素
num
和其索引添加进哈希表;
=== "Java"
```java title="leetcode_two_sum.java"
/* 方法二:辅助哈希表 */
int[] twoSumHashTable(int[] nums, int target) {
int size = nums.length;
// 辅助哈希表,空间复杂度 O(n)
Map<Integer, Integer> dic = new HashMap<>();
// 单层循环,时间复杂度 O(n)
for (int i = 0; i < size; i++) {
if (dic.containsKey(target - nums[i])) {
return new int[] { dic.get(target - nums[i]), i };
}
dic.put(nums[i], i);
}
return new int[0];
}
```
=== "C++"
```cpp title="leetcode_two_sum.cpp"
/* 方法二:辅助哈希表 */
vector<int> twoSumHashTable(vector<int>& nums, int target) {
int size = nums.size();
// 辅助哈希表,空间复杂度 O(n)
unordered_map<int, int> dic;
// 单层循环,时间复杂度 O(n)
for (int i = 0; i < size; i++) {
if (dic.find(target - nums[i]) != dic.end()) {
return { dic[target - nums[i]], i };
}
dic.emplace(nums[i], i);
}
return {};
}
```
=== "Python"
```python title="leetcode_two_sum.py"
def two_sum_hash_table(nums: list[int], target: int) -> list[int]:
""" 方法二:辅助哈希表 """
# 辅助哈希表,空间复杂度 O(n)
dic = {}
# 单层循环,时间复杂度 O(n)
for i in range(len(nums)):
if target - nums[i] in dic:
return [dic[target - nums[i]], i]
dic[nums[i]] = i
return []
```
=== "Go"
```go title="leetcode_two_sum.go"
/* 方法二:辅助哈希表 */
func twoSumHashTable(nums []int, target int) []int {
// 辅助哈希表,空间复杂度 O(n)
hashTable := map[int]int{}
// 单层循环,时间复杂度 O(n)
for idx, val := range nums {
if preIdx, ok := hashTable[target-val]; ok {
return []int{preIdx, idx}
}
hashTable[val] = idx
}
return nil
}
```
=== "JavaScript"
```javascript title="leetcode_two_sum.js"
/* 方法二:辅助哈希表 */
function twoSumHashTable(nums, target) {
// 辅助哈希表,空间复杂度 O(n)
let m = {};
// 单层循环,时间复杂度 O(n)
for (let i = 0; i < nums.length; i++) {
if (m[nums[i]] !== undefined) {
return [m[nums[i]], i];
} else {
m[target - nums[i]] = i;
}
}
return [];
}
```
=== "TypeScript"
```typescript title="leetcode_two_sum.ts"
/* 方法二:辅助哈希表 */
function twoSumHashTable(nums: number[], target: number): number[] {
// 辅助哈希表,空间复杂度 O(n)
let m: Map<number, number> = new Map();
// 单层循环,时间复杂度 O(n)
for (let i = 0; i < nums.length; i++) {
let index = m.get(nums[i]);
if (index !== undefined) {
return [index, i];
} else {
m.set(target - nums[i], i);
}
}
return [];
};
```
=== "C"
```c title="leetcode_two_sum.c"
[class]{}-[func]{twoSumHashTable}
```
=== "C#"
```csharp title="leetcode_two_sum.cs"
/* 方法二:辅助哈希表 */
int[] twoSumHashTable(int[] nums, int target)
{
int size = nums.Length;
// 辅助哈希表,空间复杂度 O(n)
Dictionary<int, int> dic = new();
// 单层循环,时间复杂度 O(n)
for (int i = 0; i < size; i++)
{
if (dic.ContainsKey(target - nums[i]))
{
return new int[] { dic[target - nums[i]], i };
}
dic.Add(nums[i], i);
}
return new int[0];
}
```
=== "Swift"
```swift title="leetcode_two_sum.swift"
/* 方法二:辅助哈希表 */
func twoSumHashTable(nums: [Int], target: Int) -> [Int] {
// 辅助哈希表,空间复杂度 O(n)
var dic: [Int: Int] = [:]
// 单层循环,时间复杂度 O(n)
for i in nums.indices {
if let j = dic[target - nums[i]] {
return [j, i]
}
dic[nums[i]] = i
}
return [0]
}
```
=== "Zig"
```zig title="leetcode_two_sum.zig"
// 方法二:辅助哈希表
fn twoSumHashTable(nums: []i32, target: i32) !?[2]i32 {
var size: usize = nums.len;
// 辅助哈希表,空间复杂度 O(n)
var dic = std.AutoHashMap(i32, i32).init(std.heap.page_allocator);
defer dic.deinit();
var i: usize = 0;
// 单层循环,时间复杂度 O(n)
while (i < size) : (i += 1) {
if (dic.contains(target - nums[i])) {
return [_]i32{dic.get(target - nums[i]).?, @intCast(i32, i)};
}
try dic.put(nums[i], @intCast(i32, i));
}
return null;
}
```
该方法的时间复杂度为 O(N)
,空间复杂度为 O(N)
,体现空间换时间。本方法虽然引入了额外空间使用,但时间和空间使用整体更加均衡,因此为本题最优解法。