|
|
|
/**
|
|
|
|
* File: my_heap.cs
|
|
|
|
* Created Time: 2023-02-06
|
|
|
|
* Author: zjkung1123 (zjkung1123@gmail.com)
|
|
|
|
*/
|
|
|
|
|
|
|
|
namespace hello_algo.chapter_heap;
|
|
|
|
|
|
|
|
/* 大顶堆 */
|
|
|
|
class MaxHeap {
|
|
|
|
// 使用列表而非数组,这样无需考虑扩容问题
|
|
|
|
private readonly List<int> maxHeap;
|
|
|
|
|
|
|
|
/* 构造函数,建立空堆 */
|
|
|
|
public MaxHeap() {
|
|
|
|
maxHeap = new List<int>();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 构造函数,根据输入列表建堆 */
|
|
|
|
public MaxHeap(IEnumerable<int> nums) {
|
|
|
|
// 将列表元素原封不动添加进堆
|
|
|
|
maxHeap = new List<int>(nums);
|
|
|
|
// 堆化除叶节点以外的其他所有节点
|
|
|
|
var size = parent(this.size() - 1);
|
|
|
|
for (int i = size; i >= 0; i--) {
|
|
|
|
siftDown(i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 获取左子节点索引 */
|
|
|
|
int left(int i) {
|
|
|
|
return 2 * i + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 获取右子节点索引 */
|
|
|
|
int right(int i) {
|
|
|
|
return 2 * i + 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 获取父节点索引 */
|
|
|
|
int parent(int i) {
|
|
|
|
return (i - 1) / 2; // 向下整除
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 访问堆顶元素 */
|
|
|
|
public int peek() {
|
|
|
|
return maxHeap[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 元素入堆 */
|
|
|
|
public void push(int val) {
|
|
|
|
// 添加节点
|
|
|
|
maxHeap.Add(val);
|
|
|
|
// 从底至顶堆化
|
|
|
|
siftUp(size() - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 获取堆大小 */
|
|
|
|
public int size() {
|
|
|
|
return maxHeap.Count;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 判断堆是否为空 */
|
|
|
|
public bool isEmpty() {
|
|
|
|
return size() == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 从节点 i 开始,从底至顶堆化 */
|
|
|
|
void siftUp(int i) {
|
|
|
|
while (true) {
|
|
|
|
// 获取节点 i 的父节点
|
|
|
|
int p = parent(i);
|
|
|
|
// 若“越过根节点”或“节点无需修复”,则结束堆化
|
|
|
|
if (p < 0 || maxHeap[i] <= maxHeap[p])
|
|
|
|
break;
|
|
|
|
// 交换两节点
|
|
|
|
swap(i, p);
|
|
|
|
// 循环向上堆化
|
|
|
|
i = p;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 元素出堆 */
|
|
|
|
public int pop() {
|
|
|
|
// 判空处理
|
|
|
|
if (isEmpty())
|
|
|
|
throw new IndexOutOfRangeException();
|
|
|
|
// 交换根节点与最右叶节点(即交换首元素与尾元素)
|
|
|
|
swap(0, size() - 1);
|
|
|
|
// 删除节点
|
|
|
|
int val = maxHeap.Last();
|
|
|
|
maxHeap.RemoveAt(size() - 1);
|
|
|
|
// 从顶至底堆化
|
|
|
|
siftDown(0);
|
|
|
|
// 返回堆顶元素
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 从节点 i 开始,从顶至底堆化 */
|
|
|
|
void siftDown(int i) {
|
|
|
|
while (true) {
|
|
|
|
// 判断节点 i, l, r 中值最大的节点,记为 ma
|
|
|
|
int l = left(i), r = right(i), ma = i;
|
|
|
|
if (l < size() && maxHeap[l] > maxHeap[ma])
|
|
|
|
ma = l;
|
|
|
|
if (r < size() && maxHeap[r] > maxHeap[ma])
|
|
|
|
ma = r;
|
|
|
|
// 若“节点 i 最大”或“越过叶节点”,则结束堆化
|
|
|
|
if (ma == i) break;
|
|
|
|
// 交换两节点
|
|
|
|
swap(i, ma);
|
|
|
|
// 循环向下堆化
|
|
|
|
i = ma;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 交换元素 */
|
|
|
|
void swap(int i, int p) {
|
|
|
|
(maxHeap[i], maxHeap[p]) = (maxHeap[p], maxHeap[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 打印堆(二叉树) */
|
|
|
|
public void print() {
|
|
|
|
var queue = new Queue<int>(maxHeap);
|
|
|
|
PrintUtil.PrintHeap(queue);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
public class my_heap {
|
|
|
|
[Test]
|
|
|
|
public void Test() {
|
|
|
|
/* 初始化大顶堆 */
|
|
|
|
MaxHeap maxHeap = new MaxHeap(new int[] { 9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2 });
|
|
|
|
Console.WriteLine("\n输入列表并建堆后");
|
|
|
|
maxHeap.print();
|
|
|
|
|
|
|
|
/* 获取堆顶元素 */
|
|
|
|
int peek = maxHeap.peek();
|
|
|
|
Console.WriteLine($"堆顶元素为 {peek}");
|
|
|
|
|
|
|
|
/* 元素入堆 */
|
|
|
|
int val = 7;
|
|
|
|
maxHeap.push(val);
|
|
|
|
Console.WriteLine($"元素 {val} 入堆后");
|
|
|
|
maxHeap.print();
|
|
|
|
|
|
|
|
/* 堆顶元素出堆 */
|
|
|
|
peek = maxHeap.pop();
|
|
|
|
Console.WriteLine($"堆顶元素 {peek} 出堆后");
|
|
|
|
maxHeap.print();
|
|
|
|
|
|
|
|
/* 获取堆大小 */
|
|
|
|
int size = maxHeap.size();
|
|
|
|
Console.WriteLine($"堆元素数量为 {size}");
|
|
|
|
|
|
|
|
/* 判断堆是否为空 */
|
|
|
|
bool isEmpty = maxHeap.isEmpty();
|
|
|
|
Console.WriteLine($"堆是否为空 {isEmpty}");
|
|
|
|
}
|
|
|
|
}
|