Add implementation of array binary tree.

Rewrite the tree serialization and deserialization methods.
Add applications of array and linked list.
pull/601/head^2
krahets 1 year ago
parent c68f18e480
commit 4e13755023

@ -23,7 +23,7 @@ static void preOrder(TreeNode *root) {
/* Driver Code */
int main() {
TreeNode *root = vecToTree(vector<int>{1, 7, 3, 4, 5, 6, 7});
TreeNode *root = vectorToTree(vector<int>{1, 7, 3, 4, 5, 6, 7});
cout << "\n初始化二叉树" << endl;
printTree(root);

@ -28,7 +28,7 @@ static void preOrder(TreeNode *root) {
/* Driver Code */
int main() {
TreeNode *root = vecToTree(vector<int>{1, 7, 3, 4, 5, 6, 7});
TreeNode *root = vectorToTree(vector<int>{1, 7, 3, 4, 5, 6, 7});
cout << "\n初始化二叉树" << endl;
printTree(root);

@ -29,7 +29,7 @@ static void preOrder(TreeNode *root) {
/* Driver Code */
int main() {
TreeNode *root = vecToTree(vector<int>{1, 7, 3, 4, 5, 6, 7});
TreeNode *root = vectorToTree(vector<int>{1, 7, 3, 4, 5, 6, 7});
cout << "\n初始化二叉树" << endl;
printTree(root);

@ -56,7 +56,7 @@ void backtrack(vector<TreeNode *> &state, vector<TreeNode *> &choices, vector<ve
/* Driver Code */
int main() {
TreeNode *root = vecToTree(vector<int>{1, 7, 3, 4, 5, 6, 7});
TreeNode *root = vectorToTree(vector<int>{1, 7, 3, 4, 5, 6, 7});
cout << "\n初始化二叉树" << endl;
printTree(root);

@ -114,7 +114,7 @@ class MaxHeap {
cout << "堆的数组表示:";
printVector(maxHeap);
cout << "堆的树状表示:" << endl;
TreeNode *root = vecToTree(maxHeap);
TreeNode *root = vectorToTree(maxHeap);
printTree(root);
freeMemoryTree(root);
}

@ -3,3 +3,4 @@ add_executable(binary_search_tree binary_search_tree.cpp)
add_executable(binary_tree binary_tree.cpp)
add_executable(binary_tree_bfs binary_tree_bfs.cpp)
add_executable(binary_tree_dfs binary_tree_dfs.cpp)
add_executable(array_binary_tree array_binary_tree.cpp)

@ -0,0 +1,137 @@
/**
* File: array_binary_tree.cpp
* Created Time: 2023-07-19
* Author: Krahets (krahets@163.com)
*/
#include "../utils/common.hpp"
/* 数组表示下的二叉树类 */
class ArrayBinaryTree {
public:
/* 构造方法 */
ArrayBinaryTree(vector<int> arr) {
tree = arr;
}
/* 节点数量 */
int size() {
return tree.size();
}
/* 获取索引为 i 节点的值 */
int val(int i) {
// 若索引越界,则返回 INT_MAX ,代表空位
if (i < 0 || i >= size())
return INT_MAX;
return tree[i];
}
/* 获取索引为 i 节点的左子节点的索引 */
int left(int i) {
return 2 * i + 1;
}
/* 获取索引为 i 节点的右子节点的索引 */
int right(int i) {
return 2 * i + 2;
}
/* 获取索引为 i 节点的父节点的索引 */
int parent(int i) {
return (i - 1) / 2;
}
/* 层序遍历 */
vector<int> levelOrder() {
vector<int> res;
// 直接遍历数组
for (int i = 0; i < size(); i++) {
if (val(i) != INT_MAX)
res.push_back(val(i));
}
return res;
}
/* 前序遍历 */
vector<int> preOrder() {
vector<int> res;
dfs(0, "pre", res);
return res;
}
/* 中序遍历 */
vector<int> inOrder() {
vector<int> res;
dfs(0, "in", res);
return res;
}
/* 后序遍历 */
vector<int> postOrder() {
vector<int> res;
dfs(0, "post", res);
return res;
}
private:
vector<int> tree;
/* 深度优先遍历 */
void dfs(int i, string order, vector<int> &res) {
// 若为空位,则返回
if (val(i) == INT_MAX)
return;
// 前序遍历
if (order == "pre")
res.push_back(val(i));
dfs(left(i), order, res);
// 中序遍历
if (order == "in")
res.push_back(val(i));
dfs(right(i), order, res);
// 后序遍历
if (order == "post")
res.push_back(val(i));
}
};
/* Driver Code */
int main() {
// 初始化二叉树
// 使用 INT_MAX 代表空位 nullptr
vector<int> arr = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};
TreeNode *root = vectorToTree(arr);
cout << "\n初始化二叉树\n";
cout << "二叉树的数组表示:\n";
printVector(arr);
cout << "二叉树的链表表示:\n";
printTree(root);
// 数组表示下的二叉树类
ArrayBinaryTree abt(arr);
// 访问节点
int i = 1;
int l = abt.left(i), r = abt.right(i), p = abt.parent(i);
cout << "\n当前节点的索引为 " << i << ",值为 " << abt.val(i) << "\n";
cout << "其左子节点的索引为 " << l << ",值为 " << (l != INT_MAX ? to_string(abt.val(l)) : "None") << "\n";
cout << "其右子节点的索引为 " << r << ",值为 " << (r != INT_MAX ? to_string(abt.val(r)) : "None") << "\n";
cout << "其父节点的索引为 " << p << ",值为 " << (p != INT_MAX ? to_string(abt.val(p)) : "None") << "\n";
// 遍历树
vector<int> res = abt.levelOrder();
cout << "\n层序遍历为: ";
printVector(res);
res = abt.preOrder();
cout << "前序遍历为: ";
printVector(res);
res = abt.inOrder();
cout << "中序遍历为: ";
printVector(res);
res = abt.postOrder();
cout << "后序遍历为: ";
printVector(res);
return 0;
}

@ -29,7 +29,7 @@ vector<int> levelOrder(TreeNode *root) {
int main() {
/* 初始化二叉树 */
// 这里借助了一个从数组直接生成二叉树的函数
TreeNode *root = vecToTree(vector<int>{1, 2, 3, 4, 5, 6, 7});
TreeNode *root = vectorToTree(vector<int>{1, 2, 3, 4, 5, 6, 7});
cout << endl << "初始化二叉树\n" << endl;
printTree(root);

@ -43,7 +43,7 @@ void postOrder(TreeNode *root) {
int main() {
/* 初始化二叉树 */
// 这里借助了一个从数组直接生成二叉树的函数
TreeNode *root = vecToTree(vector<int>{1, 2, 3, 4, 5, 6, 7});
TreeNode *root = vectorToTree(vector<int>{1, 2, 3, 4, 5, 6, 7});
cout << endl << "初始化二叉树\n" << endl;
printTree(root);

@ -7,6 +7,8 @@
#pragma once
#include <iostream>
#include <vector>
using namespace std;
/* Definition for a singly-linked list node */

@ -223,7 +223,7 @@ template <typename T, typename S, typename C> void printHeap(priority_queue<T, S
cout << "堆的数组表示:";
printVector(vec);
cout << "堆的树状表示:" << endl;
TreeNode *root = vecToTree(vec);
TreeNode *root = vectorToTree(vec);
printTree(root);
freeMemoryTree(root);
}

@ -7,8 +7,11 @@
#pragma once
#include <limits.h>
#include <vector>
/* Definition for a binary tree node */
using namespace std;
/* 二叉树节点结构体 */
struct TreeNode {
int val{};
int height = 0;
@ -20,45 +23,55 @@ struct TreeNode {
}
};
/* Generate a binary tree with a vector */
TreeNode *vecToTree(vector<int> list) {
if (list.empty())
return nullptr;
// 序列化编码规则请参考:
// https://www.hello-algo.com/chapter_tree/array_representation_of_tree/
// 二叉树的数组表示:
// [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]
// 二叉树的链表表示:
// /——— 15
// /——— 7
// /——— 3
// | \——— 6
// | \——— 12
// ——— 1
// \——— 2
// | /——— 9
// \——— 4
// \——— 8
auto *root = new TreeNode(list[0]);
queue<TreeNode *> que;
que.emplace(root);
size_t n = list.size(), i = 0;
while (!que.empty()) {
auto node = que.front();
que.pop();
if (++i >= n)
break;
// INT_MAX represent null
if (list[i] != INT_MAX) {
node->left = new TreeNode(list[i]);
que.emplace(node->left);
}
if (++i >= n)
break;
if (list[i] != INT_MAX) {
node->right = new TreeNode(list[i]);
que.emplace(node->right);
}
/* 将列表反序列化为二叉树:递归 */
TreeNode *vectorToTreeDFS(vector<int> &arr, int i) {
if (i < 0 || i >= arr.size() || arr[i] == INT_MAX) {
return nullptr;
}
TreeNode *root = new TreeNode(arr[i]);
root->left = vectorToTreeDFS(arr, 2 * i + 1);
root->right = vectorToTreeDFS(arr, 2 * i + 2);
return root;
}
/* Get a tree node with specific value in a binary tree */
TreeNode *getTreeNode(TreeNode *root, int val) {
/* 将列表反序列化为二叉树 */
TreeNode *vectorToTree(vector<int> arr) {
return vectorToTreeDFS(arr, 0);
}
/* 将二叉树序列化为列表:递归 */
void treeToVecorDFS(TreeNode *root, int i, vector<int> &res) {
if (root == nullptr)
return nullptr;
if (root->val == val)
return root;
TreeNode *left = getTreeNode(root->left, val);
TreeNode *right = getTreeNode(root->right, val);
return left != nullptr ? left : right;
return;
while (i >= res.size()) {
res.push_back(INT_MAX);
}
res[i] = root->val;
treeToVecorDFS(root->left, 2 * i + 1, res);
treeToVecorDFS(root->right, 2 * i + 2, res);
}
/* 将二叉树序列化为列表 */
vector<int> treeToVecor(TreeNode *root) {
vector<int> res;
treeToVecorDFS(root, 0, res);
return res;
}
/* Free the memory allocated to a tree */

@ -7,6 +7,7 @@
#pragma once
#include <vector>
using namespace std;
/* 顶点类 */

@ -59,15 +59,4 @@ public class TreeNode {
}
return list;
}
/* Get a tree node with specific value in a binary tree */
public static TreeNode? GetTreeNode(TreeNode? root, int val) {
if (root == null)
return null;
if (root.val == val)
return root;
TreeNode? left = GetTreeNode(root.left, val);
TreeNode? right = GetTreeNode(root.right, val);
return left ?? right;
}
}

@ -0,0 +1,136 @@
/**
* File: array_binary_tree.java
* Created Time: 2023-07-19
* Author: Krahets (krahets@163.com)
*/
package chapter_tree;
import utils.*;
import java.util.*;
/* 数组表示下的二叉树类 */
class ArrayBinaryTree {
private List<Integer> tree;
/* 构造方法 */
public ArrayBinaryTree(List<Integer> arr) {
tree = new ArrayList<>(arr);
}
/* 节点数量 */
public int size() {
return tree.size();
}
/* 获取索引为 i 节点的值 */
public Integer val(int i) {
// 若索引越界,则返回 null ,代表空位
if (i < 0 || i >= size())
return null;
return tree.get(i);
}
/* 获取索引为 i 节点的左子节点的索引 */
public Integer left(int i) {
return 2 * i + 1;
}
/* 获取索引为 i 节点的右子节点的索引 */
public Integer right(int i) {
return 2 * i + 2;
}
/* 获取索引为 i 节点的父节点的索引 */
public Integer parent(int i) {
return (i - 1) / 2;
}
/* 层序遍历 */
public List<Integer> levelOrder() {
List<Integer> res = new ArrayList<>();
// 直接遍历数组
for (int i = 0; i < size(); i++) {
if (val(i) != null)
res.add(val(i));
}
return res;
}
/* 深度优先遍历 */
private void dfs(Integer i, String order, List<Integer> res) {
// 若为空位,则返回
if (val(i) == null)
return;
// 前序遍历
if (order == "pre")
res.add(val(i));
dfs(left(i), order, res);
// 中序遍历
if (order == "in")
res.add(val(i));
dfs(right(i), order, res);
// 后序遍历
if (order == "post")
res.add(val(i));
}
/* 前序遍历 */
public List<Integer> preOrder() {
List<Integer> res = new ArrayList<>();
dfs(0, "pre", res);
return res;
}
/* 中序遍历 */
public List<Integer> inOrder() {
List<Integer> res = new ArrayList<>();
dfs(0, "in", res);
return res;
}
/* 后序遍历 */
public List<Integer> postOrder() {
List<Integer> res = new ArrayList<>();
dfs(0, "post", res);
return res;
}
}
public class array_binary_tree {
public static void main(String[] args) {
// 初始化二叉树
// 这里借助了一个从数组直接生成二叉树的函数
List<Integer> arr = Arrays.asList(1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15);
TreeNode root = TreeNode.listToTree(arr);
System.out.println("\n初始化二叉树\n");
System.out.println("二叉树的数组表示:");
System.out.println(arr);
System.out.println("二叉树的链表表示:");
PrintUtil.printTree(root);
// 数组表示下的二叉树类
ArrayBinaryTree abt = new ArrayBinaryTree(arr);
// 访问节点
int i = 1;
Integer l = abt.left(i);
Integer r = abt.right(i);
Integer p = abt.parent(i);
System.out.println("\n当前节点的索引为 " + i + " ,值为 " + abt.val(i));
System.out.println("其左子节点的索引为 " + l + " ,值为 " + (l == null ? "null" : abt.val(l)));
System.out.println("其右子节点的索引为 " + r + " ,值为 " + (r == null ? "null" : abt.val(r)));
System.out.println("其父节点的索引为 " + p + " ,值为 " + (p == null ? "null" : abt.val(p)));
// 遍历树
List<Integer> res = abt.levelOrder();
System.out.println("\n层序遍历为" + res);
res = abt.preOrder();
System.out.println("前序遍历为:" + res);
res = abt.inOrder();
System.out.println("中序遍历为:" + res);
res = abt.postOrder();
System.out.println("后序遍历为:" + res);
}
}

@ -8,61 +8,66 @@ package utils;
import java.util.*;
/* Definition for a binary tree node. */
/* 二叉树节点类 */
public class TreeNode {
public int val; // 节点值
public int height; // 节点高度
public TreeNode left; // 左子节点引用
public TreeNode right; // 右子节点引用
/* 构造方法 */
public TreeNode(int x) {
val = x;
}
/* Generate a binary tree given an array */
public static TreeNode listToTree(List<Integer> list) {
int size = list.size();
if (size == 0)
return null;
// 序列化编码规则请参考:
// https://www.hello-algo.com/chapter_tree/array_representation_of_tree/
// 二叉树的数组表示:
// [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]
// 二叉树的链表表示:
// /——— 15
// /——— 7
// /——— 3
// | \——— 6
// | \——— 12
// ——— 1
// \——— 2
// | /——— 9
// \——— 4
// \——— 8
TreeNode root = new TreeNode(list.get(0));
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
int i = 0;
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
if (++i >= size)
break;
if (list.get(i) != null) {
node.left = new TreeNode(list.get(i));
queue.add(node.left);
}
if (++i >= size)
break;
if (list.get(i) != null) {
node.right = new TreeNode(list.get(i));
queue.add(node.right);
}
/* 将列表反序列化为二叉树:递归 */
private static TreeNode listToTreeDFS(List<Integer> arr, int i) {
if (i < 0 || i >= arr.size() || arr.get(i) == null) {
return null;
}
TreeNode root = new TreeNode(arr.get(i));
root.left = listToTreeDFS(arr, 2 * i + 1);
root.right = listToTreeDFS(arr, 2 * i + 2);
return root;
}
/* Serialize a binary tree to a list */
public static List<Integer> treeToList(TreeNode root) {
List<Integer> list = new ArrayList<>();
/* 将列表反序列化为二叉树 */
public static TreeNode listToTree(List<Integer> arr) {
return listToTreeDFS(arr, 0);
}
/* 将二叉树序列化为列表:递归 */
private static void treeToListDFS(TreeNode root, int i, List<Integer> res) {
if (root == null)
return list;
Queue<TreeNode> queue = new LinkedList<TreeNode>() {{ add(root); }};
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
if (node != null) {
list.add(node.val);
queue.add(node.left);
queue.add(node.right);
} else {
list.add(null);
return;
while (i >= res.size()) {
res.add(null);
}
res.set(i, root.val);
treeToListDFS(root.left, 2 * i + 1, res);
treeToListDFS(root.right, 2 * i + 2, res);
}
return list;
/* 将二叉树序列化为列表 */
public static List<Integer> treeToList(TreeNode root) {
List<Integer> res = new ArrayList<>();
treeToListDFS(root, 0, res);
return res;
}
}

@ -0,0 +1,118 @@
"""
File: array_binary_tree.py
Created Time: 2023-07-19
Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
class ArrayBinaryTree:
"""数组表示下的二叉树类"""
def __init__(self, arr: list[int | None]):
"""构造方法"""
self.__tree = list(arr)
def size(self):
"""节点数量"""
return len(self.__tree)
def val(self, i: int) -> int:
"""获取索引为 i 节点的值"""
# 若索引越界,则返回 None ,代表空位
if i < 0 or i >= self.size():
return None
return self.__tree[i]
def left(self, i: int) -> int | None:
"""获取索引为 i 节点的左子节点的索引"""
return 2 * i + 1
def right(self, i: int) -> int | None:
"""获取索引为 i 节点的右子节点的索引"""
return 2 * i + 2
def parent(self, i: int) -> int | None:
"""获取索引为 i 节点的父节点的索引"""
return (i - 1) // 2
def level_order(self) -> list[int]:
"""层序遍历"""
self.res = []
# 直接遍历数组
for i in range(self.size()):
if self.val(i) is not None:
self.res.append(self.val(i))
return self.res
def __dfs(self, i: int, order: str):
"""深度优先遍历"""
if self.val(i) is None:
return
# 前序遍历
if order == "pre":
self.res.append(self.val(i))
self.__dfs(self.left(i), order)
# 中序遍历
if order == "in":
self.res.append(self.val(i))
self.__dfs(self.right(i), order)
# 后序遍历
if order == "post":
self.res.append(self.val(i))
def pre_order(self) -> list[int]:
"""前序遍历"""
self.res = []
self.__dfs(0, order="pre")
return self.res
def in_order(self) -> list[int]:
"""中序遍历"""
self.res = []
self.__dfs(0, order="in")
return self.res
def post_order(self) -> list[int]:
"""后序遍历"""
self.res = []
self.__dfs(0, order="post")
return self.res
"""Driver Code"""
if __name__ == "__main__":
# 初始化二叉树
# 这里借助了一个从数组直接生成二叉树的函数
arr = [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]
root = list_to_tree(arr)
print("\n初始化二叉树\n")
print(f"二叉树的数组表示:")
print(arr)
print(f"二叉树的链表表示:")
print_tree(root)
# 数组表示下的二叉树类
abt = ArrayBinaryTree(arr)
# 访问节点
i = 1
l, r, p = abt.left(i), abt.right(i), abt.parent(i)
print(f"\n当前节点的索引为 {i} ,值为 {abt.val(i)}")
print(f"其左子节点的索引为 {l} ,值为 {abt.val(l)}")
print(f"其右子节点的索引为 {r} ,值为 {abt.val(r)}")
print(f"其父节点的索引为 {p} ,值为 {abt.val(p)}")
# 遍历树
res = abt.level_order()
print("\n层序遍历为:", res)
res = abt.pre_order()
print("前序遍历为:", res)
res = abt.in_order()
print("中序遍历为:", res)
res = abt.post_order()
print("后序遍历为:", res)

@ -3,13 +3,13 @@
from __future__ import annotations
# Import common libs here to simplify the codes by `from module import *`
from .linked_list import (
from .list_node import (
ListNode,
list_to_linked_list,
linked_list_to_list,
get_list_node,
)
from .binary_tree import TreeNode, list_to_tree, tree_to_list, get_tree_node
from .tree_node import TreeNode, list_to_tree, tree_to_list, get_tree_node
from .vertex import Vertex, vals_to_vets, vets_to_vals
from .print_util import (
print_matrix,

@ -1,72 +0,0 @@
"""
File: binary_tree.py
Created Time: 2021-12-11
Author: Krahets (krahets@163.com)
"""
from collections import deque
class TreeNode:
"""Definition for a binary tree node"""
def __init__(self, val: int = 0):
self.val: int = val # 节点值
self.height: int = 0 # 节点高度
self.left: TreeNode | None = None # 左子节点引用
self.right: TreeNode | None = None # 右子节点引用
def list_to_tree(arr: list[int]) -> TreeNode | None:
"""Generate a binary tree with a list"""
if not arr:
return None
i = 0
root = TreeNode(arr[0])
queue: deque[TreeNode] = deque([root])
while queue:
node: TreeNode = queue.popleft()
i += 1
if i >= len(arr):
break
if arr[i] != None:
node.left = TreeNode(arr[i])
queue.append(node.left)
i += 1
if i >= len(arr):
break
if arr[i] != None:
node.right = TreeNode(arr[i])
queue.append(node.right)
return root
def tree_to_list(root: TreeNode | None) -> list[int]:
"""Serialize a tree into an array"""
if not root:
return []
queue: deque[TreeNode] = deque()
queue.append(root)
res: list[int] = []
while queue:
node: TreeNode | None = queue.popleft()
if node:
res.append(node.val)
queue.append(node.left)
queue.append(node.right)
else:
res.append(None)
return res
def get_tree_node(root: TreeNode | None, val: int) -> TreeNode | None:
"""Get a tree node with specific value in a binary tree"""
if not root:
return
if root.val == val:
return root
left: TreeNode | None = get_tree_node(root.left, val)
right: TreeNode | None = get_tree_node(root.right, val)
return left if left else right

@ -1,5 +1,5 @@
"""
File: linked_list.py
File: list_node.py
Created Time: 2021-12-11
Author: Krahets (krahets@163.com)
"""

@ -4,8 +4,8 @@ Created Time: 2021-12-11
Author: Krahets (krahets@163.com), msk397 (machangxinq@gmail.com)
"""
from .binary_tree import TreeNode, list_to_tree
from .linked_list import ListNode, linked_list_to_list
from .tree_node import TreeNode, list_to_tree
from .list_node import ListNode, linked_list_to_list
def print_matrix(mat: list[list[int]]) -> None:

@ -0,0 +1,80 @@
"""
File: tree_node.py
Created Time: 2021-12-11
Author: Krahets (krahets@163.com)
"""
from collections import deque
class TreeNode:
"""二叉树节点类"""
def __init__(self, val: int = 0):
self.val: int = val # 节点值
self.height: int = 0 # 节点高度
self.left: TreeNode | None = None # 左子节点引用
self.right: TreeNode | None = None # 右子节点引用
# 序列化编码规则请参考:
# https://www.hello-algo.com/chapter_tree/array_representation_of_tree/
# 二叉树的数组表示:
# [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]
# 二叉树的链表表示:
# /——— 15
# /——— 7
# /——— 3
# | \——— 6
# | \——— 12
# ——— 1
# \——— 2
# | /——— 9
# \——— 4
# \——— 8
def list_to_tree_dfs(arr: list[int], i: int) -> TreeNode | None:
"""将列表反序列化为二叉树:递归"""
# 如果索引超出数组长度,或者对应的元素为 None返回 None
if i < 0 or i >= len(arr) or arr[i] is None:
return None
# 构建当前节点
root = TreeNode(arr[i])
# 递归构建左右子树
root.left = list_to_tree_dfs(arr, 2 * i + 1)
root.right = list_to_tree_dfs(arr, 2 * i + 2)
return root
def list_to_tree(arr: list[int]) -> TreeNode | None:
"""将列表反序列化为二叉树"""
return list_to_tree_dfs(arr, 0)
def tree_to_list_dfs(root: TreeNode, i: int, res: list[int]) -> list[int]:
"""将二叉树序列化为列表:递归"""
if root is None:
return
if i >= len(res):
res += [None] * (i - len(res) + 1)
res[i] = root.val
tree_to_list_dfs(root.left, 2 * i + 1, res)
tree_to_list_dfs(root.right, 2 * i + 2, res)
def tree_to_list(root: TreeNode | None) -> list[int]:
"""将二叉树序列化为列表"""
res = []
tree_to_list_dfs(root, 0, res)
return res
def get_tree_node(root: TreeNode | None, val: int) -> TreeNode | None:
"""Get a tree node with specific value in a binary tree"""
if not root:
return
if root.val == val:
return root
left: TreeNode | None = get_tree_node(root.left, val)
right: TreeNode | None = get_tree_node(root.right, val)
return left if left else right

@ -541,8 +541,10 @@ elementAddr = firtstElementAddr + elementLength * elementIndex
## 数组典型应用
**随机访问**。如果我们想要随机抽取一些样本,那么可以用数组存储,并生成一个随机序列,根据索引实现样本的随机抽取
数组是最基础的数据结构,在各类数据结构和算法中都有广泛应用
**二分查找**。例如前文查字典的例子,我们可以将字典中的所有字按照拼音顺序存储在数组中,然后使用与日常查纸质字典相同的“翻开中间,排除一半”的方式,来实现一个查电子字典的算法。
**深度学习**。神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式构建的。数组是神经网络编程中最常使用的数据结构。
- **随机访问**:如果我们想要随机抽取一些样本,那么可以用数组存储,并生成一个随机序列,根据索引实现样本的随机抽取。
- **排序和搜索**:数组是排序和搜索算法最常用的数据结构。例如,快速排序、归并排序、二分查找等都需要在数组上进行。
- **查找表**:当我们需要快速查找一个元素或者需要查找一个元素的对应关系时,可以使用数组作为查找表。例如,我们有一个字符到其 ASCII 码的映射,可以将字符的 ASCII 码值作为索引,对应的元素存放在数组中的对应位置。
- **机器学习**:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式构建的。数组是神经网络编程中最常使用的数据结构。
- **数据结构实现**:数组可以用于实现栈、队列、哈希表、堆、图等数据结构。例如,邻接矩阵是图的常见表示之一,它实质上是一个二维数组。

@ -825,3 +825,22 @@
```
![常见链表种类](linked_list.assets/linkedlist_common_types.png)
## 链表典型应用
单向链表通常用于实现栈、队列、散列表和图等数据结构。
- **栈与队列**:当插入和删除操作都在链表的一端进行时,它表现出先进后出的的特性,对应栈;当插入操作在链表的一端进行,删除操作在链表的另一端进行,它表现出先进先出的特性,对应队列。
- **散列表**:链地址法是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。
- **图**:邻接表是表示图的一种常用方式,在其中,图的每个顶点都与一个链表相关联,链表中的每个元素都代表与该顶点相连的其他顶点。
双向链表常被用于需要快速查找前一个和下一个元素的场景。
- **高级数据结构**比如在红黑树、B 树中,我们需要知道一个节点的父节点,这可以通过在节点中保存一个指向父节点的指针来实现,类似于双向链表。
- **浏览器历史**:在网页浏览器中,当用户点击前进或后退按钮时,浏览器需要知道用户访问过的前一个和后一个网页。双向链表的特性使得这种操作变得简单。
- **LRU 算法**在缓存淘汰算法LRU我们需要快速找到最近最少使用的数据以及支持快速地添加和删除节点。这时候使用双向链表就非常合适。
循环链表常被用于需要周期性操作的场景,比如操作系统的资源调度。
- **时间片轮转调度算法**:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法它需要对一组进程进行循环。每个进程被赋予一个时间片当时间片用完时CPU 将切换到下一个进程。这种循环的操作就可以通过循环链表来实现。
- **数据缓冲区**:在某些数据缓冲区的实现中,也可能会使用到循环链表。比如在音频、视频播放器中,数据流可能会被分成多个缓冲块并放入一个循环链表,以便实现无缝播放。

@ -34,7 +34,7 @@
```cpp title=""
/* 二叉树的数组表示 */
// 使用 int 最大值标记空位,因此要求节点值不能为 INT_MAX
// 使用 int 最大值 INT_MAX 标记空位
vector<int> tree = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};
```
@ -110,6 +110,77 @@
![任意类型二叉树的数组表示](array_representation_of_tree.assets/array_representation_with_empty.png)
以下为数组表示下二叉树的实现,包括:
- 获取节点数量、节点值、左(右)子节点、父节点等基础操作;
- 获取前序遍历、中序遍历、后序遍历、层序遍历的节点值序列;
=== "Java"
```java title="array_binary_tree.java"
[class]{ArrayBinaryTree}-[func]{}
```
=== "C++"
```cpp title="array_binary_tree.cpp"
[class]{ArrayBinaryTree}-[func]{}
```
=== "Python"
```python title="array_binary_tree.py"
[class]{ArrayBinaryTree}-[func]{}
```
=== "Go"
```go title="array_binary_tree.go"
[class]{arrayBinaryTree}-[func]{}
```
=== "JavaScript"
```javascript title="array_binary_tree.js"
[class]{ArrayBinaryTree}-[func]{}
```
=== "TypeScript"
```typescript title="array_binary_tree.ts"
[class]{ArrayBinaryTree}-[func]{}
```
=== "C"
```c title="array_binary_tree.c"
[class]{arrayBinaryTree}-[func]{}
```
=== "C#"
```csharp title="array_binary_tree.cs"
[class]{ArrayBinaryTree}-[func]{}
```
=== "Swift"
```swift title="array_binary_tree.swift"
[class]{ArrayBinaryTree}-[func]{}
```
=== "Zig"
```zig title="array_binary_tree.zig"
[class]{ArrayBinaryTree}-[func]{}
```
=== "Dart"
```dart title="array_binary_tree.dart"
[class]{ArrayBinaryTree}-[func]{}
```
## 优势与局限性
二叉树的数组表示存在以下优点:

@ -138,7 +138,7 @@ nav:
- 0.2. &nbsp; 如何使用本书: chapter_preface/suggestions.md
- 0.3. &nbsp; 小结: chapter_preface/summary.md
- 1. &nbsp; 初识算法:
# [icon: material/code-tags]
# [icon: material/calculator-variant-outline]
- chapter_introduction/index.md
- 1.1. &nbsp; 算法无处不在: chapter_introduction/algorithms_are_everywhere.md
- 1.2. &nbsp; 算法是什么: chapter_introduction/what_is_dsa.md
@ -151,7 +151,7 @@ nav:
- 2.3. &nbsp; 空间复杂度: chapter_computational_complexity/space_complexity.md
- 2.4. &nbsp; 小结: chapter_computational_complexity/summary.md
- 3. &nbsp; 数据结构:
# [icon: material/database-outline]
# [icon: material/shape-outline]
- chapter_data_structure/index.md
- 3.1. &nbsp; 数据结构分类: chapter_data_structure/classification_of_data_structure.md
- 3.2. &nbsp; 基本数据类型: chapter_data_structure/basic_data_types.md
@ -159,7 +159,7 @@ nav:
- 3.4. &nbsp; 字符编码 *: chapter_data_structure/character_encoding.md
- 3.5. &nbsp; 小结: chapter_data_structure/summary.md
- 4. &nbsp; 数组与链表:
# [icon: material/view-grid-outline]
# [icon: material/view-list-outline]
- chapter_array_and_linkedlist/index.md
- 4.1. &nbsp; 数组: chapter_array_and_linkedlist/array.md
- 4.2. &nbsp; 链表: chapter_array_and_linkedlist/linked_list.md
@ -225,7 +225,7 @@ nav:
- 11.10. &nbsp; 基数排序: chapter_sorting/radix_sort.md
- 11.11. &nbsp; 小结: chapter_sorting/summary.md
- 12. &nbsp; 分治:
# [icon: material/file-tree-outline, status: new]
# [icon: material/set-split, status: new]
- chapter_divide_and_conquer/index.md
# [status: new]
- 12.1. &nbsp; 分治算法: chapter_divide_and_conquer/divide_and_conquer.md

Loading…
Cancel
Save