Fine-tune code and texts.

pull/895/head
krahets 1 year ago
parent 3628b40f44
commit 5b1a219b8b

@ -115,9 +115,9 @@ int main() {
int i = 1; int i = 1;
int l = abt.left(i), r = abt.right(i), p = abt.parent(i); int l = abt.left(i), r = abt.right(i), p = abt.parent(i);
cout << "\n当前节点的索引为 " << i << ",值为 " << abt.val(i) << "\n"; cout << "\n当前节点的索引为 " << i << ",值为 " << abt.val(i) << "\n";
cout << "其左子节点的索引为 " << l << ",值为 " << (l != INT_MAX ? to_string(abt.val(l)) : "None") << "\n"; cout << "其左子节点的索引为 " << l << ",值为 " << (l != INT_MAX ? to_string(abt.val(l)) : "nullptr") << "\n";
cout << "其右子节点的索引为 " << r << ",值为 " << (r != INT_MAX ? to_string(abt.val(r)) : "None") << "\n"; cout << "其右子节点的索引为 " << r << ",值为 " << (r != INT_MAX ? to_string(abt.val(r)) : "nullptr") << "\n";
cout << "其父节点的索引为 " << p << ",值为 " << (p != INT_MAX ? to_string(abt.val(p)) : "None") << "\n"; cout << "其父节点的索引为 " << p << ",值为 " << (p != INT_MAX ? to_string(abt.val(p)) : "nullptr") << "\n";
// 遍历树 // 遍历树
vector<int> res = abt.levelOrder(); vector<int> res = abt.levelOrder();

@ -74,12 +74,11 @@ vector<int> treeToVecor(TreeNode *root) {
return res; return res;
} }
/* Free the memory allocated to a tree */ /* 释放二叉树内存 */
void freeMemoryTree(TreeNode *root) { void freeMemoryTree(TreeNode *root) {
if (root == nullptr) if (root == nullptr)
return; return;
freeMemoryTree(root->left); freeMemoryTree(root->left);
freeMemoryTree(root->right); freeMemoryTree(root->right);
// 释放内存
delete root; delete root;
} }

@ -92,9 +92,9 @@ if __name__ == "__main__":
arr = [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15] arr = [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]
root = list_to_tree(arr) root = list_to_tree(arr)
print("\n初始化二叉树\n") print("\n初始化二叉树\n")
print(f"二叉树的数组表示:") print("二叉树的数组表示:")
print(arr) print(arr)
print(f"二叉树的链表表示:") print("二叉树的链表表示:")
print_tree(root) print_tree(root)
# 数组表示下的二叉树类 # 数组表示下的二叉树类

@ -55,10 +55,7 @@
[file]{merge_sort}-[class]{}-[func]{merge_sort} [file]{merge_sort}-[class]{}-[func]{merge_sort}
``` ```
实现合并函数 `merge()` 存在以下难点。 值得注意的是,`nums` 的待合并区间为 `[left, right]` ,而 `tmp` 的对应区间为 `[0, right - left]`
- **需要特别注意各个变量的含义**。`nums` 的待合并区间为 `[left, right]` ,但由于 `tmp` 仅复制了 `nums` 该区间的元素,因此 `tmp` 对应区间为 `[0, right - left]`
- 在比较 `tmp[i]``tmp[j]` 的大小时,**还需考虑子数组遍历完成后的索引越界问题**,即 `i > leftEnd``j > rightEnd` 的情况。索引越界的优先级是最高的,如果左子数组已经被合并完了,那么不需要继续比较,直接合并右子数组元素即可。
## 算法特性 ## 算法特性

Loading…
Cancel
Save