Add TypeScript code and docs to AVL tree and the coding style for Typescript and JavaScript (#342)

* Add TypeScript code and docs to AVL tree and update JavaScript style

* Update the coding style for Typescript and JavaScript
pull/349/head
Justin Tse 2 years ago committed by GitHub
parent 7f4243ab77
commit b14568151c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -6,7 +6,7 @@
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
function randomNumbers(n) { function randomNumbers(n) {
let nums = Array(n); const nums = Array(n);
// 生成数组 nums = { 1, 2, 3, ..., n } // 生成数组 nums = { 1, 2, 3, ..., n }
for (let i = 0; i < n; i++) { for (let i = 0; i < n; i++) {
nums[i] = i + 1; nums[i] = i + 1;

@ -1,11 +1,11 @@
/** /**
* File: avl_tree.cpp * File: avl_tree.js
* Created Time: 2023-02-05 * Created Time: 2023-02-05
* Author: what-is-me (whatisme@outlook.jp) * Author: what-is-me (whatisme@outlook.jp)
*/ */
let { TreeNode } = require("../include/TreeNode"); const { TreeNode } = require("../include/TreeNode");
let { printTree } = require("../include/PrintUtil"); const { printTree } = require("../include/PrintUtil");
/* AVL 树*/ /* AVL 树*/
class AVLTree { class AVLTree {
@ -36,8 +36,8 @@ class AVLTree {
/* 右旋操作 */ /* 右旋操作 */
rightRotate(node) { rightRotate(node) {
let child = node.left; const child = node.left;
let grandChild = child.right; const grandChild = child.right;
// 以 child 为原点,将 node 向右旋转 // 以 child 为原点,将 node 向右旋转
child.right = node; child.right = node;
node.left = grandChild; node.left = grandChild;
@ -50,8 +50,8 @@ class AVLTree {
/* 左旋操作 */ /* 左旋操作 */
leftRotate(node) { leftRotate(node) {
let child = node.right; const child = node.right;
let grandChild = child.left; const grandChild = child.left;
// 以 child 为原点,将 node 向左旋转 // 以 child 为原点,将 node 向左旋转
child.left = node; child.left = node;
node.right = grandChild; node.right = grandChild;
@ -65,7 +65,7 @@ class AVLTree {
/* 执行旋转操作,使该子树重新恢复平衡 */ /* 执行旋转操作,使该子树重新恢复平衡 */
rotate(node) { rotate(node) {
// 获取结点 node 的平衡因子 // 获取结点 node 的平衡因子
let balanceFactor = this.balanceFactor(node); const balanceFactor = this.balanceFactor(node);
// 左偏树 // 左偏树
if (balanceFactor > 1) { if (balanceFactor > 1) {
if (this.balanceFactor(node.left) >= 0) { if (this.balanceFactor(node.left) >= 0) {
@ -126,14 +126,14 @@ class AVLTree {
else if (val > node.val) node.right = this.removeHelper(node.right, val); else if (val > node.val) node.right = this.removeHelper(node.right, val);
else { else {
if (node.left === null || node.right === null) { if (node.left === null || node.right === null) {
let child = node.left !== null ? node.left : node.right; const child = node.left !== null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回 // 子结点数量 = 0 ,直接删除 node 并返回
if (child === null) return null; if (child === null) return null;
// 子结点数量 = 1 ,直接删除 node // 子结点数量 = 1 ,直接删除 node
else node = child; else node = child;
} else { } else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点 // 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
let temp = this.getInOrderNext(node.right); const temp = this.getInOrderNext(node.right);
node.right = this.removeHelper(node.right, temp.val); node.right = this.removeHelper(node.right, temp.val);
node.val = temp.val; node.val = temp.val;
} }
@ -184,8 +184,9 @@ function testRemove(tree, val) {
printTree(tree.root); printTree(tree.root);
} }
/* Driver Code */
/* 初始化空 AVL 树 */ /* 初始化空 AVL 树 */
let avlTree = new AVLTree(); const avlTree = new AVLTree();
/* 插入结点 */ /* 插入结点 */
// 请关注插入结点后AVL 树是如何保持平衡的 // 请关注插入结点后AVL 树是如何保持平衡的
testInsert(avlTree, 1); testInsert(avlTree, 1);
@ -209,5 +210,5 @@ testRemove(avlTree, 5); // 删除度为 1 的结点
testRemove(avlTree, 4); // 删除度为 2 的结点 testRemove(avlTree, 4); // 删除度为 2 的结点
/* 查询结点 */ /* 查询结点 */
let node = avlTree.search(7); const node = avlTree.search(7);
console.log("\n查找到的结点对象为 " + node + ",结点值 = " + node.val); console.log("\n查找到的结点对象为", node, ",结点值 = " + node.val);

@ -6,15 +6,15 @@
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
function randomNumbers(n: number): number[] { function randomNumbers(n: number): number[] {
let nums = Array(n); const nums = Array(n);
// 生成数组 nums = { 1, 2, 3, ..., n } // 生成数组 nums = { 1, 2, 3, ..., n }
for (let i = 0; i < n; i++) { for (let i = 0; i < n; i++) {
nums[i] = i + 1; nums[i] = i + 1;
} }
// 随机打乱数组元素 // 随机打乱数组元素
for (let i = 0; i < n; i++) { for (let i = 0; i < n; i++) {
let r = Math.floor(Math.random() * (i + 1)); const r = Math.floor(Math.random() * (i + 1));
let temp = nums[i]; const temp = nums[i];
nums[i] = nums[r]; nums[i] = nums[r];
nums[r] = temp; nums[r] = temp;
} }
@ -35,9 +35,9 @@ function findOne(nums: number[]): number {
/* Driver Code */ /* Driver Code */
for (let i = 0; i < 10; i++) { for (let i = 0; i < 10; i++) {
let n = 100; const n = 100;
let nums = randomNumbers(n); const nums = randomNumbers(n);
let index = findOne(nums); const index = findOne(nums);
console.log( console.log(
"\n数组 [ 1, 2, ..., n ] 被打乱后 = [" + nums.join(", ") + "]" "\n数组 [ 1, 2, ..., n ] 被打乱后 = [" + nums.join(", ") + "]"
); );

@ -37,7 +37,7 @@ function linearSearchLinkedList(head: ListNode | null, target: number): ListNode
const target = 3; const target = 3;
/* 在数组中执行线性查找 */ /* 在数组中执行线性查找 */
const nums = [ 1, 5, 3, 2, 4, 7, 5, 9, 10, 8 ]; const nums = [1, 5, 3, 2, 4, 7, 5, 9, 10, 8];
const index = linearSearchArray(nums, target); const index = linearSearchArray(nums, target);
console.log('目标元素 3 的索引 =', index); console.log('目标元素 3 的索引 =', index);

@ -0,0 +1,228 @@
/**
* File: avl_tree.ts
* Created Time: 2023-02-06
* Author: Justin (xiefahit@gmail.com)
*/
import { TreeNode } from "../module/TreeNode";
import { printTree } from "../module/PrintUtil";
/* AVL 树*/
class AVLTree {
root: TreeNode;
/*构造函数*/
constructor() {
this.root = null; //根节点
}
/* 获取结点高度 */
height(node: TreeNode): number {
// 空结点高度为 -1 ,叶结点高度为 0
return node === null ? -1 : node.height;
}
/* 更新结点高度 */
updateHeight(node: TreeNode): void {
// 结点高度等于最高子树高度 + 1
node.height = Math.max(this.height(node.left), this.height(node.right)) + 1;
}
/* 获取平衡因子 */
balanceFactor(node: TreeNode): number {
// 空结点平衡因子为 0
if (node === null) return 0;
// 结点平衡因子 = 左子树高度 - 右子树高度
return this.height(node.left) - this.height(node.right);
}
/* 右旋操作 */
rightRotate(node: TreeNode): TreeNode {
const child = node.left;
const grandChild = child.right;
// 以 child 为原点,将 node 向右旋转
child.right = node;
node.left = grandChild;
// 更新结点高度
this.updateHeight(node);
this.updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
/* 左旋操作 */
leftRotate(node: TreeNode): TreeNode {
const child = node.right;
const grandChild = child.left;
// 以 child 为原点,将 node 向左旋转
child.left = node;
node.right = grandChild;
// 更新结点高度
this.updateHeight(node);
this.updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
/* 执行旋转操作,使该子树重新恢复平衡 */
rotate(node: TreeNode): TreeNode {
// 获取结点 node 的平衡因子
const balanceFactor = this.balanceFactor(node);
// 左偏树
if (balanceFactor > 1) {
if (this.balanceFactor(node.left) >= 0) {
// 右旋
return this.rightRotate(node);
} else {
// 先左旋后右旋
node.left = this.leftRotate(node.left);
return this.rightRotate(node);
}
}
// 右偏树
if (balanceFactor < -1) {
if (this.balanceFactor(node.right) <= 0) {
// 左旋
return this.leftRotate(node);
} else {
// 先右旋后左旋
node.right = this.rightRotate(node.right);
return this.leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
/* 插入结点 */
insert(val: number): TreeNode {
this.root = this.insertHelper(this.root, val);
return this.root;
}
/* 递归插入结点(辅助函数) */
insertHelper(node: TreeNode, val: number): TreeNode {
if (node === null) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node.val) {
node.left = this.insertHelper(node.left, val);
} else if (val > node.val) {
node.right = this.insertHelper(node.right, val);
} else {
return node; // 重复结点不插入,直接返回
}
this.updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.rotate(node);
// 返回子树的根节点
return node;
}
/* 删除结点 */
remove(val: number): TreeNode {
this.root = this.removeHelper(this.root, val);
return this.root;
}
/* 递归删除结点(辅助函数) */
removeHelper(node: TreeNode, val: number): TreeNode {
if (node === null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val) {
node.left = this.removeHelper(node.left, val);
} else if (val > node.val) {
node.right = this.removeHelper(node.right, val);
} else {
if (node.left === null || node.right === null) {
const child = node.left !== null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child === null) {
return null;
} else {
// 子结点数量 = 1 ,直接删除 node
node = child;
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
const temp = this.getInOrderNext(node.right);
node.right = this.removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
this.updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.rotate(node);
// 返回子树的根节点
return node;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
getInOrderNext(node: TreeNode): TreeNode {
if (node === null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left !== null) {
node = node.left;
}
return node;
}
/* 查找结点 */
search(val: number): TreeNode {
let cur = this.root;
// 循环查找,越过叶结点后跳出
while (cur !== null) {
if (cur.val < val) {
// 目标结点在 cur 的右子树中
cur = cur.right;
} else if (cur.val > val) {
// 目标结点在 cur 的左子树中
cur = cur.left;
} else {
// 找到目标结点,跳出循环
break;
}
}
// 返回目标结点
return cur;
}
}
function testInsert(tree: AVLTree, val: number): void {
tree.insert(val);
console.log("\n插入结点 " + val + " 后AVL 树为");
printTree(tree.root);
}
function testRemove(tree: AVLTree, val: number): void {
tree.remove(val);
console.log("\n删除结点 " + val + " 后AVL 树为");
printTree(tree.root);
}
/* Driver Code */
/* 初始化空 AVL 树 */
const avlTree = new AVLTree();
/* 插入结点 */
// 请关注插入结点后AVL 树是如何保持平衡的
testInsert(avlTree, 1);
testInsert(avlTree, 2);
testInsert(avlTree, 3);
testInsert(avlTree, 4);
testInsert(avlTree, 5);
testInsert(avlTree, 8);
testInsert(avlTree, 7);
testInsert(avlTree, 9);
testInsert(avlTree, 10);
testInsert(avlTree, 6);
/* 插入重复结点 */
testInsert(avlTree, 7);
/* 删除结点 */
// 请关注删除结点后AVL 树是如何保持平衡的
testRemove(avlTree, 8); // 删除度为 0 的结点
testRemove(avlTree, 5); // 删除度为 1 的结点
testRemove(avlTree, 4); // 删除度为 2 的结点
/* 查询结点 */
const node = avlTree.search(7);
console.log("\n查找到的结点对象为", node, ",结点值 = " + node.val);

@ -31,4 +31,21 @@ function arrToLinkedList(arr: number[]): ListNode | null {
return dum.next; return dum.next;
} }
export { ListNode, arrToLinkedList }; /**
* Get a list node with specific value from a linked list
* @param head
* @param val
* @return
*/
function getListNode(head: ListNode | null, val: number): ListNode | null {
while (head !== null && head.val !== val) {
head = head.next;
}
return head;
}
export {
ListNode,
arrToLinkedList,
getListNode
};

@ -8,14 +8,15 @@
* Definition for a binary tree node. * Definition for a binary tree node.
*/ */
class TreeNode { class TreeNode {
val: number; val: number; // 结点值
left: TreeNode | null; height: number; // 结点高度
right: TreeNode | null; left: TreeNode | null; // 左子结点指针
right: TreeNode | null; // 右子结点指针
constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { constructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {
this.val = val === undefined ? 0 : val; // 结点值 this.val = val === undefined ? 0 : val;
this.left = left === undefined ? null : left; // 左子结点指针 this.height = height === undefined ? 0 : height;
this.right = right === undefined ? null : right; // 右子结点指针 this.left = left === undefined ? null : left;
this.right = right === undefined ? null : right;
} }
} }
@ -33,7 +34,7 @@ function arrToTree(arr: (number | null)[]): TreeNode | null {
const queue = [root]; const queue = [root];
let i = 0; let i = 0;
while (queue.length) { while (queue.length) {
let node = queue.shift() as TreeNode; const node = queue.shift() as TreeNode;
if (++i >= arr.length) break; if (++i >= arr.length) break;
if (arr[i] !== null) { if (arr[i] !== null) {
node.left = new TreeNode(arr[i] as number); node.left = new TreeNode(arr[i] as number);

@ -2555,7 +2555,7 @@ $$
```js title="worst_best_time_complexity.js" ```js title="worst_best_time_complexity.js"
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
function randomNumbers(n) { function randomNumbers(n) {
let nums = Array(n); const nums = Array(n);
// 生成数组 nums = { 1, 2, 3, ..., n } // 生成数组 nums = { 1, 2, 3, ..., n }
for (let i = 0; i < n; i++) { for (let i = 0; i < n; i++) {
nums[i] = i + 1; nums[i] = i + 1;
@ -2588,15 +2588,15 @@ $$
```typescript title="worst_best_time_complexity.ts" ```typescript title="worst_best_time_complexity.ts"
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
function randomNumbers(n: number): number[] { function randomNumbers(n: number): number[] {
let nums = Array(n); const nums = Array(n);
// 生成数组 nums = { 1, 2, 3, ..., n } // 生成数组 nums = { 1, 2, 3, ..., n }
for (let i = 0; i < n; i++) { for (let i = 0; i < n; i++) {
nums[i] = i + 1; nums[i] = i + 1;
} }
// 随机打乱数组元素 // 随机打乱数组元素
for (let i = 0; i < n; i++) { for (let i = 0; i < n; i++) {
let r = Math.floor(Math.random() * (i + 1)); const r = Math.floor(Math.random() * (i + 1));
let temp = nums[i]; const temp = nums[i];
nums[i] = nums[r]; nums[i] = nums[r];
nums[r] = temp; nums[r] = temp;
} }

@ -82,14 +82,14 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
```js title="avl_tree.js" ```js title="avl_tree.js"
class TreeNode { class TreeNode {
val; // 结点值 val; // 结点值
height; //结点高度
left; // 左子结点指针 left; // 左子结点指针
right; // 右子结点指针 right; // 右子结点指针
height; //结点高度
constructor(val, left, right, height) { constructor(val, left, right, height) {
this.val = val === undefined ? 0 : val; this.val = val === undefined ? 0 : val;
this.height = height === undefined ? 0 : height;
this.left = left === undefined ? null : left; this.left = left === undefined ? null : left;
this.right = right === undefined ? null : right; this.right = right === undefined ? null : right;
this.height = height === undefined ? 0 : height;
} }
} }
``` ```
@ -97,7 +97,18 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "TypeScript" === "TypeScript"
```typescript title="avl_tree.ts" ```typescript title="avl_tree.ts"
class TreeNode {
val: number; // 结点值
height: number; // 结点高度
left: TreeNode | null; // 左子结点指针
right: TreeNode | null; // 右子结点指针
constructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {
this.val = val === undefined ? 0 : val;
this.height = height === undefined ? 0 : height;
this.left = left === undefined ? null : left;
this.right = right === undefined ? null : right;
}
}
``` ```
=== "C" === "C"
@ -228,7 +239,17 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "TypeScript" === "TypeScript"
```typescript title="avl_tree.ts" ```typescript title="avl_tree.ts"
/* 获取结点高度 */
height(node: TreeNode): number {
// 空结点高度为 -1 ,叶结点高度为 0
return node === null ? -1 : node.height;
}
/* 更新结点高度 */
updateHeight(node: TreeNode): void {
// 结点高度等于最高子树高度 + 1
node.height = Math.max(this.height(node.left), this.height(node.right)) + 1;
}
``` ```
=== "C" === "C"
@ -340,7 +361,13 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "TypeScript" === "TypeScript"
```typescript title="avl_tree.ts" ```typescript title="avl_tree.ts"
/* 获取平衡因子 */
balanceFactor(node: TreeNode): number {
// 空结点平衡因子为 0
if (node === null) return 0;
// 结点平衡因子 = 左子树高度 - 右子树高度
return this.height(node.left) - this.height(node.right);
}
``` ```
=== "C" === "C"
@ -479,8 +506,8 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
```js title="avl_tree.js" ```js title="avl_tree.js"
/* 右旋操作 */ /* 右旋操作 */
rightRotate(node) { rightRotate(node) {
let child = node.left; const child = node.left;
let grandChild = child.right; const grandChild = child.right;
// 以 child 为原点,将 node 向右旋转 // 以 child 为原点,将 node 向右旋转
child.right = node; child.right = node;
node.left = grandChild; node.left = grandChild;
@ -495,7 +522,19 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "TypeScript" === "TypeScript"
```typescript title="avl_tree.ts" ```typescript title="avl_tree.ts"
/* 右旋操作 */
rightRotate(node: TreeNode): TreeNode {
const child = node.left;
const grandChild = child.right;
// 以 child 为原点,将 node 向右旋转
child.right = node;
node.left = grandChild;
// 更新结点高度
this.updateHeight(node);
this.updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
``` ```
=== "C" === "C"
@ -624,8 +663,8 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
```js title="avl_tree.js" ```js title="avl_tree.js"
/* 左旋操作 */ /* 左旋操作 */
leftRotate(node) { leftRotate(node) {
let child = node.right; const child = node.right;
let grandChild = child.left; const grandChild = child.left;
// 以 child 为原点,将 node 向左旋转 // 以 child 为原点,将 node 向左旋转
child.left = node; child.left = node;
node.right = grandChild; node.right = grandChild;
@ -640,7 +679,19 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "TypeScript" === "TypeScript"
```typescript title="avl_tree.ts" ```typescript title="avl_tree.ts"
/* 左旋操作 */
leftRotate(node: TreeNode): TreeNode {
const child = node.right;
const grandChild = child.left;
// 以 child 为原点,将 node 向左旋转
child.left = node;
node.right = grandChild;
// 更新结点高度
this.updateHeight(node);
this.updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
``` ```
=== "C" === "C"
@ -843,7 +894,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
/* 执行旋转操作,使该子树重新恢复平衡 */ /* 执行旋转操作,使该子树重新恢复平衡 */
rotate(node) { rotate(node) {
// 获取结点 node 的平衡因子 // 获取结点 node 的平衡因子
let balanceFactor = this.balanceFactor(node); const balanceFactor = this.balanceFactor(node);
// 左偏树 // 左偏树
if (balanceFactor > 1) { if (balanceFactor > 1) {
if (this.balanceFactor(node.left) >= 0) { if (this.balanceFactor(node.left) >= 0) {
@ -874,7 +925,35 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "TypeScript" === "TypeScript"
```typescript title="avl_tree.ts" ```typescript title="avl_tree.ts"
/* 执行旋转操作,使该子树重新恢复平衡 */
rotate(node: TreeNode): TreeNode {
// 获取结点 node 的平衡因子
const balanceFactor = this.balanceFactor(node);
// 左偏树
if (balanceFactor > 1) {
if (this.balanceFactor(node.left) >= 0) {
// 右旋
return this.rightRotate(node);
} else {
// 先左旋后右旋
node.left = this.leftRotate(node.left);
return this.rightRotate(node);
}
}
// 右偏树
if (balanceFactor < -1) {
if (this.balanceFactor(node.right) <= 0) {
// 左旋
return this.leftRotate(node);
} else {
// 先右旋后左旋
node.right = this.rightRotate(node.right);
return this.leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
``` ```
=== "C" === "C"
@ -1092,7 +1171,29 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "TypeScript" === "TypeScript"
```typescript title="avl_tree.ts" ```typescript title="avl_tree.ts"
/* 插入结点 */
insert(val: number): TreeNode {
this.root = this.insertHelper(this.root, val);
return this.root;
}
/* 递归插入结点(辅助函数) */
insertHelper(node: TreeNode, val: number): TreeNode {
if (node === null) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node.val) {
node.left = this.insertHelper(node.left, val);
} else if (val > node.val) {
node.right = this.insertHelper(node.right, val);
} else {
return node; // 重复结点不插入,直接返回
}
this.updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.rotate(node);
// 返回子树的根节点
return node;
}
``` ```
=== "C" === "C"
@ -1333,14 +1434,14 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
else if (val > node.val) node.right = this.removeHelper(node.right, val); else if (val > node.val) node.right = this.removeHelper(node.right, val);
else { else {
if (node.left === null || node.right === null) { if (node.left === null || node.right === null) {
let child = node.left !== null ? node.left : node.right; const child = node.left !== null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回 // 子结点数量 = 0 ,直接删除 node 并返回
if (child === null) return null; if (child === null) return null;
// 子结点数量 = 1 ,直接删除 node // 子结点数量 = 1 ,直接删除 node
else node = child; else node = child;
} else { } else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点 // 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
let temp = this.getInOrderNext(node.right); const temp = this.getInOrderNext(node.right);
node.right = this.removeHelper(node.right, temp.val); node.right = this.removeHelper(node.right, temp.val);
node.val = temp.val; node.val = temp.val;
} }
@ -1351,12 +1452,68 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
// 返回子树的根节点 // 返回子树的根节点
return node; return node;
} }
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
getInOrderNext(node) {
if (node === null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left !== null) {
node = node.left;
}
return node;
}
``` ```
=== "TypeScript" === "TypeScript"
```typescript title="avl_tree.ts" ```typescript title="avl_tree.ts"
/* 删除结点 */
remove(val: number): TreeNode {
this.root = this.removeHelper(this.root, val);
return this.root;
}
/* 递归删除结点(辅助函数) */
removeHelper(node: TreeNode, val: number): TreeNode {
if (node === null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val) {
node.left = this.removeHelper(node.left, val);
} else if (val > node.val) {
node.right = this.removeHelper(node.right, val);
} else {
if (node.left === null || node.right === null) {
const child = node.left !== null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child === null) {
return null;
} else {
// 子结点数量 = 1 ,直接删除 node
node = child;
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
const temp = this.getInOrderNext(node.right);
node.right = this.removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
this.updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.rotate(node);
// 返回子树的根节点
return node;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
getInOrderNext(node: TreeNode): TreeNode {
if (node === null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left !== null) {
node = node.left;
}
return node;
}
``` ```
=== "C" === "C"

Loading…
Cancel
Save