Add the section of edit distance problem (#599)

pull/602/head
Yudong Jin 1 year ago committed by GitHub
parent 73190703ea
commit c3f80e52af
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -7,3 +7,4 @@ add_executable(min_path_sum min_path_sum.cpp)
add_executable(unbounded_knapsack unbounded_knapsack.cpp) add_executable(unbounded_knapsack unbounded_knapsack.cpp)
add_executable(coin_change coin_change.cpp) add_executable(coin_change coin_change.cpp)
add_executable(coin_change_ii coin_change_ii.cpp) add_executable(coin_change_ii coin_change_ii.cpp)
add_executable(edit_distance edit_distance.cpp)

@ -0,0 +1,136 @@
/**
* File: edit_distance.cpp
* Created Time: 2023-07-13
* Author: Krahets (krahets@163.com)
*/
#include "../utils/common.hpp"
/* 编辑距离:暴力搜索 */
int editDistanceDFS(string s, string t, int i, int j) {
// 若 s 和 t 都为空,则返回 0
if (i == 0 && j == 0)
return 0;
// 若 s 为空,则返回 t 长度
if (i == 0)
return j;
// 若 t 为空,则返回 s 长度
if (j == 0)
return i;
// 若两字符相等,则直接跳过此两字符
if (s[i - 1] == t[j - 1])
return editDistanceDFS(s, t, i - 1, j - 1);
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
int insert = editDistanceDFS(s, t, i, j - 1);
int del = editDistanceDFS(s, t, i - 1, j);
int replace = editDistanceDFS(s, t, i - 1, j - 1);
// 返回最少编辑步数
return min(min(insert, del), replace) + 1;
}
/* 编辑距离:记忆化搜索 */
int editDistanceDFSMem(string s, string t, vector<vector<int>> &mem, int i, int j) {
// 若 s 和 t 都为空,则返回 0
if (i == 0 && j == 0)
return 0;
// 若 s 为空,则返回 t 长度
if (i == 0)
return j;
// 若 t 为空,则返回 s 长度
if (j == 0)
return i;
// 若已有记录,则直接返回之
if (mem[i][j] != -1)
return mem[i][j];
// 若两字符相等,则直接跳过此两字符
if (s[i - 1] == t[j - 1])
return editDistanceDFSMem(s, t, mem, i - 1, j - 1);
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
int insert = editDistanceDFSMem(s, t, mem, i, j - 1);
int del = editDistanceDFSMem(s, t, mem, i - 1, j);
int replace = editDistanceDFSMem(s, t, mem, i - 1, j - 1);
// 记录并返回最少编辑步数
mem[i][j] = min(min(insert, del), replace) + 1;
return mem[i][j];
}
/* 编辑距离:动态规划 */
int editDistanceDP(string s, string t) {
int n = s.length(), m = t.length();
vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));
// 状态转移:首行首列
for (int i = 1; i <= n; i++) {
dp[i][0] = i;
}
for (int j = 1; j <= m; j++) {
dp[0][j] = j;
}
// 状态转移:其余行列
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (s[i - 1] == t[j - 1]) {
// 若两字符相等,则直接跳过此两字符
dp[i][j] = dp[i - 1][j - 1];
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
}
/* 编辑距离:状态压缩后的动态规划 */
int editDistanceDPComp(string s, string t) {
int n = s.length(), m = t.length();
vector<int> dp(m + 1, 0);
// 状态转移:首行
for (int j = 1; j <= m; j++) {
dp[j] = j;
}
// 状态转移:其余行
for (int i = 1; i <= n; i++) {
// 状态转移:首列
int leftup = dp[0]; // 暂存 dp[i-1, j-1]
dp[0] = i;
// 状态转移:其余列
for (int j = 1; j <= m; j++) {
int temp = dp[j];
if (s[i - 1] == t[j - 1]) {
// 若两字符相等,则直接跳过此两字符
dp[j] = leftup;
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // 更新为下一轮的 dp[i-1, j-1]
}
}
return dp[m];
}
/* Driver Code */
int main() {
string s = "bag";
string t = "pack";
int n = s.length(), m = t.length();
// 暴力搜索
int res = editDistanceDFS(s, t, n, m);
cout << "" << s << " 更改为 " << t << " 最少需要编辑 " << res << "\n";
// 记忆化搜索
vector<vector<int>> mem(n + 1, vector<int>(m + 1, -1));
res = editDistanceDFSMem(s, t, mem, n, m);
cout << "" << s << " 更改为 " << t << " 最少需要编辑 " << res << "\n";
// 动态规划
res = editDistanceDP(s, t);
cout << "" << s << " 更改为 " << t << " 最少需要编辑 " << res << "\n";
// 状态压缩后的动态规划
res = editDistanceDPComp(s, t);
cout << "" << s << " 更改为 " << t << " 最少需要编辑 " << res << "\n";
return 0;
}

@ -0,0 +1,139 @@
/**
* File: edit_distance.java
* Created Time: 2023-07-13
* Author: Krahets (krahets@163.com)
*/
package chapter_dynamic_programming;
import java.util.Arrays;
public class edit_distance {
/* 编辑距离:暴力搜索 */
static int editDistanceDFS(String s, String t, int i, int j) {
// 若 s 和 t 都为空,则返回 0
if (i == 0 && j == 0)
return 0;
// 若 s 为空,则返回 t 长度
if (i == 0)
return j;
// 若 t 为空,则返回 s 长度
if (j == 0)
return i;
// 若两字符相等,则直接跳过此两字符
if (s.charAt(i - 1) == t.charAt(j - 1))
return editDistanceDFS(s, t, i - 1, j - 1);
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
int insert = editDistanceDFS(s, t, i, j - 1);
int delete = editDistanceDFS(s, t, i - 1, j);
int replace = editDistanceDFS(s, t, i - 1, j - 1);
// 返回最少编辑步数
return Math.min(Math.min(insert, delete), replace) + 1;
}
/* 编辑距离:记忆化搜索 */
static int editDistanceDFSMem(String s, String t, int[][] mem, int i, int j) {
// 若 s 和 t 都为空,则返回 0
if (i == 0 && j == 0)
return 0;
// 若 s 为空,则返回 t 长度
if (i == 0)
return j;
// 若 t 为空,则返回 s 长度
if (j == 0)
return i;
// 若已有记录,则直接返回之
if (mem[i][j] != -1)
return mem[i][j];
// 若两字符相等,则直接跳过此两字符
if (s.charAt(i - 1) == t.charAt(j - 1))
return editDistanceDFSMem(s, t, mem, i - 1, j - 1);
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
int insert = editDistanceDFSMem(s, t, mem, i, j - 1);
int delete = editDistanceDFSMem(s, t, mem, i - 1, j);
int replace = editDistanceDFSMem(s, t, mem, i - 1, j - 1);
// 记录并返回最少编辑步数
mem[i][j] = Math.min(Math.min(insert, delete), replace) + 1;
return mem[i][j];
}
/* 编辑距离:动态规划 */
static int editDistanceDP(String s, String t) {
int n = s.length(), m = t.length();
int[][] dp = new int[n + 1][m + 1];
// 状态转移:首行首列
for (int i = 1; i <= n; i++) {
dp[i][0] = i;
}
for (int j = 1; j <= m; j++) {
dp[0][j] = j;
}
// 状态转移:其余行列
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (s.charAt(i - 1) == t.charAt(j - 1)) {
// 若两字符相等,则直接跳过此两字符
dp[i][j] = dp[i - 1][j - 1];
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[n][m];
}
/* 编辑距离:状态压缩后的动态规划 */
static int editDistanceDPComp(String s, String t) {
int n = s.length(), m = t.length();
int[] dp = new int[m + 1];
// 状态转移:首行
for (int j = 1; j <= m; j++) {
dp[j] = j;
}
// 状态转移:其余行
for (int i = 1; i <= n; i++) {
// 状态转移:首列
int leftup = dp[0]; // 暂存 dp[i-1, j-1]
dp[0] = i;
// 状态转移:其余列
for (int j = 1; j <= m; j++) {
int temp = dp[j];
if (s.charAt(i - 1) == t.charAt(j - 1)) {
// 若两字符相等,则直接跳过此两字符
dp[j] = leftup;
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[j] = Math.min(Math.min(dp[j - 1], dp[j]), leftup) + 1;
}
leftup = temp; // 更新为下一轮的 dp[i-1, j-1]
}
}
return dp[m];
}
public static void main(String[] args) {
String s = "bag";
String t = "pack";
int n = s.length(), m = t.length();
// 暴力搜索
int res = editDistanceDFS(s, t, n, m);
System.out.println("将 " + s + " 更改为 " + t + " 最少需要编辑 " + res + " 步");
// 记忆化搜索
int[][] mem = new int[n + 1][m + 1];
for (int[] row : mem)
Arrays.fill(row, -1);
res = editDistanceDFSMem(s, t, mem, n, m);
System.out.println("将 " + s + " 更改为 " + t + " 最少需要编辑 " + res + " 步");
// 动态规划
res = editDistanceDP(s, t);
System.out.println("将 " + s + " 更改为 " + t + " 最少需要编辑 " + res + " 步");
// 状态压缩后的动态规划
res = editDistanceDPComp(s, t);
System.out.println("将 " + s + " 更改为 " + t + " 最少需要编辑 " + res + " 步");
}
}

@ -0,0 +1,123 @@
"""
File: edit_distancde.py
Created Time: 2023-07-04
Author: Krahets (krahets@163.com)
"""
def edit_distance_dfs(s: str, t: str, i: int, j: int) -> int:
"""编辑距离:暴力搜索"""
# 若 s 和 t 都为空,则返回 0
if i == 0 and j == 0:
return 0
# 若 s 为空,则返回 t 长度
if i == 0:
return j
# 若 t 为空,则返回 s 长度
if j == 0:
return i
# 若两字符相等,则直接跳过此两字符
if s[i - 1] == t[j - 1]:
return edit_distance_dfs(s, t, i - 1, j - 1)
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
insert = edit_distance_dfs(s, t, i, j - 1)
delete = edit_distance_dfs(s, t, i - 1, j)
replace = edit_distance_dfs(s, t, i - 1, j - 1)
# 返回最少编辑步数
return min(insert, delete, replace) + 1
def edit_distance_dfs_mem(s: str, t: str, mem: list[list[int]], i: int, j: int) -> int:
"""编辑距离:记忆化搜索"""
# 若 s 和 t 都为空,则返回 0
if i == 0 and j == 0:
return 0
# 若 s 为空,则返回 t 长度
if i == 0:
return j
# 若 t 为空,则返回 s 长度
if j == 0:
return i
# 若已有记录,则直接返回之
if mem[i][j] != -1:
return mem[i][j]
# 若两字符相等,则直接跳过此两字符
if s[i - 1] == t[j - 1]:
return edit_distance_dfs_mem(s, t, mem, i - 1, j - 1)
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
insert = edit_distance_dfs_mem(s, t, mem, i, j - 1)
delete = edit_distance_dfs_mem(s, t, mem, i - 1, j)
replace = edit_distance_dfs_mem(s, t, mem, i - 1, j - 1)
# 记录并返回最少编辑步数
mem[i][j] = min(insert, delete, replace) + 1
return mem[i][j]
def edit_distance_dp(s: str, t: str) -> int:
"""编辑距离:动态规划"""
n, m = len(s), len(t)
dp = [[0] * (m + 1) for _ in range(n + 1)]
# 状态转移:首行首列
for i in range(1, n + 1):
dp[i][0] = i
for j in range(1, m + 1):
dp[0][j] = j
# 状态转移:其余行列
for i in range(1, n + 1):
for j in range(1, m + 1):
if s[i - 1] == t[j - 1]:
# 若两字符相等,则直接跳过此两字符
dp[i][j] = dp[i - 1][j - 1]
else:
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1
return dp[n][m]
def edit_distance_dp_comp(s: str, t: str) -> int:
"""编辑距离:状态压缩后的动态规划"""
n, m = len(s), len(t)
dp = [0] * (m + 1)
# 状态转移:首行
for j in range(1, m + 1):
dp[j] = j
# 状态转移:其余行
for i in range(1, n + 1):
# 状态转移:首列
leftup = dp[0] # 暂存 dp[i-1, j-1]
dp[0] += 1
# 状态转移:其余列
for j in range(1, m + 1):
temp = dp[j]
if s[i - 1] == t[j - 1]:
# 若两字符相等,则直接跳过此两字符
dp[j] = leftup
else:
# 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[j] = min(dp[j - 1], dp[j], leftup) + 1
leftup = temp # 更新为下一轮的 dp[i-1, j-1]
return dp[m]
"""Driver Code"""
if __name__ == "__main__":
s = "bag"
t = "pack"
n, m = len(s), len(t)
# 暴力搜索
res = edit_distance_dfs(s, t, n, m)
print(f"{s} 更改为 {t} 最少需要编辑 {res}")
# 记忆化搜索
mem = [[-1] * (m + 1) for _ in range(n + 1)]
res = edit_distance_dfs_mem(s, t, mem, n, m)
print(f"{s} 更改为 {t} 最少需要编辑 {res}")
# 动态规划
res = edit_distance_dp(s, t)
print(f"{s} 更改为 {t} 最少需要编辑 {res}")
# 状态压缩后的动态规划
res = edit_distance_dp_comp(s, t)
print(f"{s} 更改为 {t} 最少需要编辑 {res}")

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

@ -0,0 +1,245 @@
# 编辑距离问题
编辑距离,也被称为 Levenshtein 距离,是两个字符串之间互相转换的最小修改次数,通常用于在信息检索和自然语言处理中度量两个序列的相似度。
!!! question
输入两个字符串 $s$ 和 $t$ ,返回将 $s$ 转换为 $t$ 所需的最少编辑步数。
你可以在一个字符串中进行三种编辑操作:插入一个字符、删除一个字符、替换字符为任意一个字符。
如下图所示,将 `kitten` 转换为 `sitting` 需要编辑 3 步,包括 2 次替换操作与 1 次添加操作;将 `hello` 转换为 `algo` 需要 3 步,包括 2 次替换操作和 1 次删除操作。
![编辑距离的示例数据](edit_distance_problem.assets/edit_distance_example.png)
**编辑距离问题可以很自然地用决策树模型来解释**。字符串对应树节点,一轮决策(一次编辑操作)对应树的一条边。
如下图所示,在不限制操作的情况下,每个节点都可以派生出许多条边,每条边对应一种操作。实际上,从 `hello` 转换到 `algo` 有许多种可能的路径,下图展示的是最短路径。从决策树的角度看,本题目标是求解节点 `hello` 和节点 `algo` 之间的最短路径。
![基于决策树模型表示编辑距离问题](edit_distance_problem.assets/edit_distance_decision_tree.png)
**第一步:思考每轮的决策,定义状态,从而得到 $dp$ 表**
每一轮的决策是对字符串 $s$ 进行一次编辑操作。
我们希望在编辑操作的过程中,问题的规模逐渐缩小,这样才能构建子问题。设字符串 $s$ 和 $t$ 的长度分别为 $n$ 和 $m$ ,我们先考虑两字符串尾部的字符 $s[n-1]$ 和 $t[m-1]$
- 若 $s[n-1]$ 和 $t[m-1]$ 相同,我们可以直接跳过它们,接下来考虑 $s[n-2]$ 和 $t[m-2]$ ;
- 若 $s[n-1]$ 和 $t[m-1]$ 不同,我们需要对 $s$ 进行一次编辑(插入、删除、替换),使得两字符串尾部的字符相同,从而可以跳过它们,考虑规模更小的问题;
也就是说,我们在字符串 $s$ 中进行的每一轮决策(编辑操作),都会使得 $s$ 和 $t$ 中剩余的待匹配字符发生变化。因此,状态定义为当前在 $s$ , $t$ 中考虑的第 $i$ , $j$ 个字符,记为 $[i, j]$ 。
状态 $[i, j]$ 对应的子问题:**将 $s$ 的前 $i$ 个字符更改为 $t$ 的前 $j$ 个字符所需的最少编辑步数**。
至此得到一个尺寸为 $(i+1) \times (j+1)$ 的二维 $dp$ 表。
**第二步:找出最优子结构,进而推导出状态转移方程**
考虑子问题 $dp[i, j]$ ,其对应的两个字符串的尾部字符为 $s[i-1]$ 和 $t[j-1]$ ,可根据不同编辑操作分为三种情况:
1. 在 $s$ 尾部添加 $t[j-1]$ ,则剩余子问题 $dp[i, j-1]$
2. 删除 $s[i-1]$ ,则剩余子问题 $dp[i-1, j]$
3. 将 $s[i-1]$ 替换为 $t[j-1]$ ,则剩余子问题 $dp[i-1, j-1]$
![编辑距离的状态转移](edit_distance_problem.assets/edit_distance_state_transfer.png)
根据以上分析,可得最优子结构:$dp[i, j]$ 的最少编辑步数等于 $dp[i, j-1]$ , $dp[i-1, j]$ , $dp[i-1, j-1]$ 三者中的最少编辑步数,再加上本次编辑的步数 $1$ 。对应的状态转移方程为:
$$
dp[i, j] = \min(dp[i, j-1], dp[i-1, j], dp[i-1, j-1]) + 1
$$
请注意,**当 $s[i-1]$ 和 $t[j-1]$ 相同时,无需编辑当前字符**,此时状态转移方程为:
$$
dp[i, j] = dp[i-1, j-1]
$$
**第三步:确定边界条件和状态转移顺序**
当两字符串都为空时,编辑步数为 $0$ ,即 $dp[0, 0] = 0$ 。当 $s$ 为空但 $t$ 不为空时,最少编辑步数等于 $t$ 的长度,即 $dp[0, j] = j$ 。当 $s$ 不为空但 $t$ 为空时,等于 $s$ 的长度,即 $dp[i, 0] = i$ 。
观察状态转移方程,解 $dp[i, j]$ 依赖左方、上方、左上方的解,因此通过两层循环正序遍历整个 $dp$ 表即可。
=== "Java"
```java title="edit_distance.java"
[class]{edit_distance}-[func]{editDistanceDP}
```
=== "C++"
```cpp title="edit_distance.cpp"
[class]{}-[func]{editDistanceDP}
```
=== "Python"
```python title="edit_distance.py"
[class]{}-[func]{edit_distance_dp}
```
=== "Go"
```go title="edit_distance.go"
[class]{}-[func]{editDistanceDP}
```
=== "JavaScript"
```javascript title="edit_distance.js"
[class]{}-[func]{editDistanceDP}
```
=== "TypeScript"
```typescript title="edit_distance.ts"
[class]{}-[func]{editDistanceDP}
```
=== "C"
```c title="edit_distance.c"
[class]{}-[func]{editDistanceDP}
```
=== "C#"
```csharp title="edit_distance.cs"
[class]{edit_distance}-[func]{editDistanceDP}
```
=== "Swift"
```swift title="edit_distance.swift"
[class]{}-[func]{editDistanceDP}
```
=== "Zig"
```zig title="edit_distance.zig"
[class]{}-[func]{editDistanceDP}
```
=== "Dart"
```dart title="edit_distance.dart"
[class]{}-[func]{editDistanceDP}
```
如下图所示,编辑距离问题的状态转移过程与背包问题非常类似,都可以看作是填写一个二维网格的过程。
=== "<1>"
![编辑距离的动态规划过程](edit_distance_problem.assets/edit_distance_dp_step1.png)
=== "<2>"
![edit_distance_dp_step2](edit_distance_problem.assets/edit_distance_dp_step2.png)
=== "<3>"
![edit_distance_dp_step3](edit_distance_problem.assets/edit_distance_dp_step3.png)
=== "<4>"
![edit_distance_dp_step4](edit_distance_problem.assets/edit_distance_dp_step4.png)
=== "<5>"
![edit_distance_dp_step5](edit_distance_problem.assets/edit_distance_dp_step5.png)
=== "<6>"
![edit_distance_dp_step6](edit_distance_problem.assets/edit_distance_dp_step6.png)
=== "<7>"
![edit_distance_dp_step7](edit_distance_problem.assets/edit_distance_dp_step7.png)
=== "<8>"
![edit_distance_dp_step8](edit_distance_problem.assets/edit_distance_dp_step8.png)
=== "<9>"
![edit_distance_dp_step9](edit_distance_problem.assets/edit_distance_dp_step9.png)
=== "<10>"
![edit_distance_dp_step10](edit_distance_problem.assets/edit_distance_dp_step10.png)
=== "<11>"
![edit_distance_dp_step11](edit_distance_problem.assets/edit_distance_dp_step11.png)
=== "<12>"
![edit_distance_dp_step12](edit_distance_problem.assets/edit_distance_dp_step12.png)
=== "<13>"
![edit_distance_dp_step13](edit_distance_problem.assets/edit_distance_dp_step13.png)
=== "<14>"
![edit_distance_dp_step14](edit_distance_problem.assets/edit_distance_dp_step14.png)
=== "<15>"
![edit_distance_dp_step15](edit_distance_problem.assets/edit_distance_dp_step15.png)
下面考虑状态压缩,将 $dp$ 表的第一维删除。由于 $dp[i,j]$ 是由上方 $dp[i-1, j]$ 、左方 $dp[i, j-1]$ 、左上方状态 $dp[i-1, j-1]$ 转移而来,而正序遍历会丢失左上方 $dp[i-1, j-1]$ ,倒序遍历无法提前构建 $dp[i, j-1]$ ,因此两种遍历顺序都不可取。
为解决此问题,我们可以使用一个变量 `leftup` 来暂存左上方的解 $dp[i-1, j-1]$ ,这样便只用考虑左方和上方的解,与完全背包问题的情况相同,可使用正序遍历。
=== "Java"
```java title="edit_distance.java"
[class]{edit_distance}-[func]{editDistanceDPComp}
```
=== "C++"
```cpp title="edit_distance.cpp"
[class]{}-[func]{editDistanceDPComp}
```
=== "Python"
```python title="edit_distance.py"
[class]{}-[func]{edit_distance_dp_comp}
```
=== "Go"
```go title="edit_distance.go"
[class]{}-[func]{editDistanceDPComp}
```
=== "JavaScript"
```javascript title="edit_distance.js"
[class]{}-[func]{editDistanceDPComp}
```
=== "TypeScript"
```typescript title="edit_distance.ts"
[class]{}-[func]{editDistanceDPComp}
```
=== "C"
```c title="edit_distance.c"
[class]{}-[func]{editDistanceDPComp}
```
=== "C#"
```csharp title="edit_distance.cs"
[class]{edit_distance}-[func]{editDistanceDPComp}
```
=== "Swift"
```swift title="edit_distance.swift"
[class]{}-[func]{editDistanceDPComp}
```
=== "Zig"
```zig title="edit_distance.zig"
[class]{}-[func]{editDistanceDPComp}
```
=== "Dart"
```dart title="edit_distance.dart"
[class]{}-[func]{editDistanceDPComp}
```

@ -219,6 +219,7 @@ nav:
- 13.3. &nbsp; DP 解题思路New: chapter_dynamic_programming/dp_solution_pipeline.md - 13.3. &nbsp; DP 解题思路New: chapter_dynamic_programming/dp_solution_pipeline.md
- 13.4. &nbsp; 0-1 背包问题New: chapter_dynamic_programming/knapsack_problem.md - 13.4. &nbsp; 0-1 背包问题New: chapter_dynamic_programming/knapsack_problem.md
- 13.5. &nbsp; 完全背包问题New: chapter_dynamic_programming/unbounded_knapsack_problem.md - 13.5. &nbsp; 完全背包问题New: chapter_dynamic_programming/unbounded_knapsack_problem.md
- 13.6. &nbsp; 编辑距离问题New: chapter_dynamic_programming/edit_distance_problem.md
- 14. &nbsp; &nbsp; 附录: - 14. &nbsp; &nbsp; 附录:
- 14.1. &nbsp; 编程环境安装: chapter_appendix/installation.md - 14.1. &nbsp; 编程环境安装: chapter_appendix/installation.md
- 14.2. &nbsp; 一起参与创作: chapter_appendix/contribution.md - 14.2. &nbsp; 一起参与创作: chapter_appendix/contribution.md

Loading…
Cancel
Save